Several healthcare products have been developed and marketed in recent times as a result of people’s growing interest in personal health. Unstable shoes have been introduced to revitalize the muscles of the lower limbs and to modify the gait posture while walking. However, healthcare products for people should first be proved functional and safe, as some of those can sometimes result in severe injuries and side effects. Certification is, therefore, necessary in the case of unstable shoes. In this study, the functionality of unstable shoes was analyzed; it was proved that difference in pressure distribution resulting from the shape of the unstable shoes helps strengthen the muscles of the lower limbs. These analyses focused on the activation of the muscles by employing EMG (Electromyography). However, the approach involving EMG cannot carry out measurements on hidden muscles, and the noise involved is a source of potential error; therefore, this study utilizes the simulation software SIMM (Software for Interactive Musculoskeletal Modeling) for this purpose. We performed a biomechanical study using a full-body musculoskeletal model. Using the captured 3D motion data and ground reaction forces data, kinetic data was calculated in order to determine its influence on the adjacent segments. We captured the movements of six volunteers, all males in their twenties. The volunteers wore both unstable and normal shoes during each trial. This study focuses on the activation of muscles of the lower limbs when wearing unstable shoes. We inspected the muscles and analyzed the disparities between unstable and normal shoes. We observed from experimental results that most muscles of the lower limbs were revitalized. Further, we observed an improvement in the gait posture after unstable shoes were used for a period of 12 weeks. This analysis of inner muscles that cannot be examined by direct methods can help consumers make informed choices regarding healthcare products. Such analysis is made possible by simulation programs such as SIMM.

This content is only available via PDF.
You do not currently have access to this content.