Balance control during standing is attributable to the complex, nonlinear interactions of multiple postural control systems, manifested as the highly irregular displacements in center of pressure (COP) during standing. Aging and associated frailty may result in the degradation of these complex interactions and manifest as a loss of complexity in COP dynamics. Furthermore, frail individuals may not be able to adapt to a superimposed stress that challenges balance, leading to falls. To test these hypotheses, data were analyzed from the MOBILIZE Boston Study, an ongoing population-based study of community-dwelling older adults. Each participant’s frailty phenotype (not frail, pre-frail, frail) was determined using the Fried et al. 2001 definition. 551 participants (age 77.9±5.5) stood on a balance platform, with or without concurrently performing serial subtractions. Complexity of balance dynamics over multiple time scales was quantified using multiscale entropy (MSE), a more sensitive measure of physiologic health than variance. Of the participants, 39% were pre-frail and 6% were frail. Baseline MSE was lower with each successive frailty condition (p<0.002). When performing the cognitive task, MSE was lowered similarly in all groups (p<0.001). Frailty was associated with a loss of complexity in the dynamics of postural sway, which may be due to the degradation of integrated postural control networks that enable upright stance. Performance of a dual-task further reduced this complexity. Cognitive distractions during standing may further compromise balance control in frail individuals, which may explain their increased fall risk.

This content is only available via PDF.
You do not currently have access to this content.