In this paper, the inverse kinematic and control paradigm of a novel tele-robotic system for MRI-guided interventions for closed-bore MRI-guided brain biopsy is presented. Other candidate neurosurgical procedures enabled by this system would include thermal ablation, radiofrequency ablation, deep brain stimulators, and targeted drug delivery. The control architecture is also reported. The design paradigm is fundamentally based on a modular design configuration of the slave manipulator that is performing tasks inside MR scanner. The tele-robotic system is a master-slave system. The master manipulator consists of three units including: (i) the navigation module; (ii) the biopsy module; and (iii) the surgical arm. Navigation and biopsy modules were designed to undertake the alignment and advancement of the surgical needle respectively. The biopsy needle is held and advanced by the biopsy module. The biopsy module is attached to the navigation module. All three units are held by a surgical arm. The main challenge in the control of the biopsy needle using the proposed navigation module is to adjust a surgical tool from its initial position and orientation to a final position and orientation. In a typical brain biopsy operation, the desired task is to align the biopsy needle with a target knowing the positions of both the target in the patient’s skull and the entry point on the surface of the skull. In this paper, the mechanical design, control paradigms, and inverse kinematics model of the robot are reported.

This content is only available via PDF.
You do not currently have access to this content.