Understanding the dynamics of human walking is a complex task due to the interaction of the musculoskeletal and the central nervous systems. Nevertheless, the use of simple models can provide useful insight into the mechanical aspects of bipedal locomotion. Such models exploit the observations that human walking significantly relies on passive dynamics and inverted pendulum-like behaviour. The mechanical analysis of walking involves the study of the finite motion single support phase and the impulsive motion of the impacts that occur at heel strike. Such impacts are dominant events because they represent a sudden topology transition and moreover, they are the main cause of energy consumption during the gait cycle. The aim of this work is to gain insight into the dynamics and energetics of heel strike. We use a concept that decouples the dynamics of the biped to the spaces of admissible and constrained motions at the topology transition. This approach is then applied to a straight-legged biped with upper body. Detailed analysis and discussions are presented to quantify the effects of the mass distribution and the impact configuration on the energetics of walking.

This content is only available via PDF.
You do not currently have access to this content.