Three-dimensional computational modeling and simulation using front tracking method are presented on the motion of a deformable cell over an adhesive surface in a shear flow. The numerical method couples a Navier-Stokes flow solver with cell membrane mechanics, and a Monte Carlo simulation to capture stochastic formation and breakage of receptor/ligand bonds. The entire range of events during cell adhesion, namely, initial arrest of a free-flowing cell, slow rolling of an adherent cell, and detachment off the surface is simulated. Simulations are conducted to signify the role of hydrodynamic lift force that exists for a deformable particle in a wall-bounded flow. Three sets of numerical experiments are presented. In the first set, we consider the initial arrest of the cell, and show that the time needed for the cell to arrest increases with increasing Ca, but rapidly drops and saturates for higher bond strength. In the second set, we consider quasi-steady rolling motion of the cell, and predict the experimentally observed “stop and go” motion of the rolling leukocytes which is characterized by intermittent pauses and sudden jumps in cell velocity. In the third set we consider the detachment of the cell from the surface upon breakage of bonds. The bond strength needed to prevent the detachment of an adherent cell is computed and shown to be maximum for an intermediate Ca.

This content is only available via PDF.
You do not currently have access to this content.