During summer, the use of conventional electrically driven air conditioning systems often results in high electricity consumption. On the other hand, heat demand is very low, therefore heat from Combined Heat and Power plants (CHP) or from solar collectors can not be used. Thermal driven desiccant assisted air conditioning systems offer the possibility to shift energy requirements from electricity to heat. Furthermore, as sorptive pre-drying air doesn’t require cooling under dew point for dehumidifying nor any subsequent heating, cold sources at higher temperatures (e.g. 18°C) can be used for cooling. Within the scope of research projects, different demonstration plants for office buildings and a private bungalow were built, where the operations were evaluated by the Hamburg University of Technology. One plant combines a desiccant wheel with a small (5 kWel) gas driven co-generation plant. Instead of an electric chiller or a water evaporation system (desiccant evaporating cooling), borehole heat exchangers in combination with a radiant floor heating system were used for cooling in summer. In this paper, performance comparisons with conventional systems based on numerical simulations and measurement data are shown, including a cost analysis. It is found that the combination of desiccant wheels and earth energy systems offers considerable energy savings compared to conventional electric systems. The operation of such systems is also cost-effective. It can lead to a reduction of up to 28% of primary energy consumption in a whole year compared to a conventional A/C system.

This content is only available via PDF.
You do not currently have access to this content.