The accuracy of predictions of thermal boundary conductance using traditional models such as the diffuse mismatch model (DMM) varies depending on the types of material comprising the interface. These traditional models assume that phonons are elastically scattered which drives the energy conductance across the interface. It has been shown that at relatively high temperatures (i.e., above the Debye temperature) inelastic scattering events can drive interfacial transport. In this case, the predictions from traditional models become highly inaccurate. In this paper, the effects of inelastic scattering on thermal boundary conductance at metal/dielectric interfaces are studied. Experimental transient thermoreflectance data showing inelastic trends are reviewed and compared to traditional models. Using the physical assumptions in the traditional models and the experimental data, the relative contributions of inelastic and elastic scattering on thermal boundary conductance is inferred.

This content is only available via PDF.
You do not currently have access to this content.