Semiconductor nanowires offer an alternative bottom-up route for nanoscale electronics and photonics application. The possibility of combining nanowires with cheap flexible substrates in the form of nanowire thin-films or composite materials composed of nanowires has opened up a new paradigm for inorganic semiconductor based technologies on flexible substrates. Recently, thin film transistors have been fabricated on plastic substrates based on this technique. This paper discusses laser thermal processing of nanowires as an alternative to conventional thermal processing. Ultra-short pulsed lasers allow for localized energy deposition into nanowires and can therefore enable thermal processing of nanowires on sensitive substrates such as plastics. Laser-based annealing of ion-implanted silicon nanowires is investigated for application in high performance flexible electronics. The efficacy of laser processing is examined through studies of the effect of number of pulses and incident fluence levels on conductance of the nanowires. Finally, numerical predictions of the absorption in the nanowires are presented.

This content is only available via PDF.
You do not currently have access to this content.