It is hypothesized that the characteristics of vocal fold self oscillation is dependent on the nonlinearity of the solid structure i.e. the tissue. Studies of fluid structure interaction are conducted for three dimensional larynx models. Simulations were performed using the codes FLUENT and ABAQUS coupled by the code MpCCI. For the air an unsteady, laminar flow model was considered. Visco-hyperelasticity was used to characterize the solid domain representing the tissue structure. The computational model is used to conduct a parametric study on the self-oscillation response of the model with focus on the influence of the non-linearity in the hyperelastic response. Individual computations were compared by documenting the variation of the total energy of the structure. It is demonstrated that dissipation in the flow as well as the non-linearity in the elastic response all interact to stabilize or destabilize the vibration amplitude.

This content is only available via PDF.
You do not currently have access to this content.