The stress wave propagation and stress distribution in scarf adhesive joints have been analyzed using three-dimensional finite element method (FEM). The FEM code employed was LS-DYNA. An impact tensile loading was applied to the joint by dropping a weight. The effect of the scarf angle, Young’s modulus of the adhesive and adhesive thickness on the stress wave propagations and stress distributions at the interfaces have been examined. As the results, it was found that the point where the maximum principal stress becomes maximum changes between 52 degree and 60 degree under impact tensile loadings. The maximum value of the maximum principal stress increases as scarf angle decreases, Young’s modulus of the adhesive increases and adhesive thickness increases. In addition, Experiments to measure the strains and joint strengths were compared with the calculated results. The calculated results were in fairly good agreements with the experimental results.

This content is only available via PDF.
You do not currently have access to this content.