Multi-material compliant mechanisms enhance the performance of regular single-material compliant mechanisms by adding a new design option, material type variation. This paper introduces a geometric modeling method for multimaterial compliant mechanisms by using multi-layer wide curves. Based on the introduced modeling method, a geometric optimization approach for multi-material compliant mechanisms is proposed. A multi-layer wide curve is a curve with variable cross-sections and multiple materials. In this paper, every connection in the multi-material compliant mechanism is represented by a multi-layer wide curve and the whole mechanism is modeled as a set of connected multi-layer wide curves. The geometric modeling and optimization of a multi-material compliant mechanism are considered as the generation and optimal selection of the control parameters of the corresponding multi-layer wide curves. The deformation and performance of multi-material compliant mechanisms is evaluated by the isoparametric degenerate-continuum nonlinear finite element procedure. The problem-dependent objectives are optimized and the practical constraints are imposed during the optimization process. The effectiveness of the proposed geometric modeling and optimization procedures is verified by the demonstrated examples.

This content is only available via PDF.
You do not currently have access to this content.