The effective use of existing Finite Element Codes in the direct simulation of hypervelocity impacts by projectiles is limited by the dependence of the size of localized failure regions on the mesh size and alignment. This gives rise to a non-physical description of the penetration and perforation processes. A micromechanical constitutive model that couples the anisotropic thermo-viscodamage mechanism with the thermo-hypoelasto-viscoplastic deformation will be presented as a remedy to this situation. Explicit and implicit microstructural length scale measures, which preserve the well-posed nature of the differential equations, are introduced through the use of the viscosity and gradient localization limiters. Simple and robust numerical algorithms for the integration of the constitutive equations will be also presented. The proposed unified integration algorithms are extensions of the classical rate-independent return mapping algorithms to the rate-dependent problems. A simple and direct computational algorithm is also used for implementing the gradient-dependent equations. This algorithm can be implemented in the existing finite element codes without numerous modifications as compared to the current numerical approaches for integrating gradient-dependent models. Model capabilities are preliminarily illustrated for the dynamic localization of inelastic flow in adiabatic shear bands and the perforation of Weldox 460E steel plates with various thicknesses by a deformable blunt projectile at various high impact speeds.

This content is only available via PDF.
You do not currently have access to this content.