This paper presents a novel feedback sensing approach for actively suppressing vibrations of a single-link flexible manipulator. Slewing of the flexible link by a rotating hub induces vibrations in the link that persist long after the hub stops rotating. These vibrations are suppressed through a combined scheme of PD-based hub motion control and proposed piezoelectric (PZT) actuator control, which is a composite linear and velocity feedback controller. Lyapunov approach was used to synthesize the controller based on a finite element model of the system. Its realization was possible due to the availability of both linear and angular velocity feedback provided by a unique, commercially-available fiber optic curvature sensor array, called ShapeTape™. It is comprised of an array of fiber optic curvature sensors, laminated on a long, thin ribbon tape, geometrically arranged in such a way that, when it is embedded into the flexible link, the bend and twist of the link’s centerline can be measured. Experimental results show the effectiveness of the proposed approach.

This content is only available via PDF.
You do not currently have access to this content.