The paper presents the study of non-stationary oscillations, which is based on extension of Lindstedt-Poincare (EL-P) method with multiple time scales for non-linear dynamical systems with cubic non-linearities. The generalization of the method is presented to discover the passage of weakly nonlinear systems through the resonance as a control or excitation parameter varies slowly across points of instabilities corresponding to the appearance of bifurcations. The method is applied to obtain non-stationary resonance curves of transition across points of instabilities during the passage through primary resonance of harmonically excited oscillators of Duffing type.

This content is only available via PDF.
You do not currently have access to this content.