The paper presents the study of non-stationary oscillations, which is based on extension of Lindstedt-Poincare (EL-P) method with multiple time scales for non-linear dynamical systems with cubic non-linearities. The generalization of the method is presented to discover the passage of weakly nonlinear systems through the resonance as a control or excitation parameter varies slowly across points of instabilities corresponding to the appearance of bifurcations. The method is applied to obtain non-stationary resonance curves of transition across points of instabilities during the passage through primary resonance of harmonically excited oscillators of Duffing type.
Volume Subject Area:
Mechanical Systems and Control
This content is only available via PDF.
Copyright © 2007
by ASME
You do not currently have access to this content.