Differential flatness has been investigated in the context of mobile vehicles for planning and control of their motions. In these models, the wheels are considered to be non-slipping, i.e., the system dynamics is subject to non-holonomic constraints. If a manipulator arm is mounted on such a mobile vehicle, the dynamics becomes highly nonlinear due to the nonlinear coupling between the motions of the mobile vehicle and the manipulator arm. A challenging question is how to perform point-to-point motions of such a system in the state space of the mobile manipulator. If some of the actuators are absent in the mechanical arm, the mobile manipulator becomes under-actuated and consequently even harder to plan and control. This paper presents a methodology for design of mobile vehicles, mounted with under-actuated manipulators operating in a horizontal plane, such that the combined system is differentially flat. In this paper, we show that by appropriate inertia distribution of the links and addition of torsion springs at the joints, a range of under-actuated designs are possible where the underactuated mobile manipulator system is differentially flat. The differential flatness property allows to efficiently solve the problem of trajectory planning and feedback controller design for point to point motions of the system. The proposed method is illustrated by the example of a mobile vehicle with under-actuated three-link manipulator.
Skip Nav Destination
Sign In or Register for Account
ASME 2007 International Mechanical Engineering Congress and Exposition
November 11–15, 2007
Seattle, Washington, USA
Conference Sponsors:
- ASME
ISBN:
0-7918-4303-3
PROCEEDINGS PAPER
Differentially Flat Designs of Mobile Vehicles With Under-Actuated Manipulator Arms
Ji-Chul Ryu
,
Ji-Chul Ryu
University of Delaware, Newark, DE
Search for other works by this author on:
Vivek Sangwan
,
Vivek Sangwan
University of Delaware, Newark, DE
Search for other works by this author on:
Sunil K. Agrawal
Sunil K. Agrawal
University of Delaware, Newark, DE
Search for other works by this author on:
Ji-Chul Ryu
University of Delaware, Newark, DE
Vivek Sangwan
University of Delaware, Newark, DE
Sunil K. Agrawal
University of Delaware, Newark, DE
Paper No:
IMECE2007-43526, pp. 1439-1445; 7 pages
Published Online:
May 22, 2009
Citation
Ryu, J, Sangwan, V, & Agrawal, SK. "Differentially Flat Designs of Mobile Vehicles With Under-Actuated Manipulator Arms." Proceedings of the ASME 2007 International Mechanical Engineering Congress and Exposition. Volume 9: Mechanical Systems and Control, Parts A, B, and C. Seattle, Washington, USA. November 11–15, 2007. pp. 1439-1445. ASME. https://doi.org/10.1115/IMECE2007-43526
Download citation file:
Sign In
4
Views
0
Citations
Related Proceedings Papers
Related Articles
Nonlinear Robust Output Stabilization for Mechanical Systems Based on Luenberger-Like Controller/Observer
J. Dyn. Sys., Meas., Control (August,2017)
Control of Redundant Mechanical Systems Under Equality and Inequality Constraints on Both Input and Constraint Forces
J. Comput. Nonlinear Dynam (July,2011)
Practical Design of a Sliding Mode Controller for Pneumatic Actuators
J. Dyn. Sys., Meas., Control (December,1997)
Related Chapters
QP Based Encoder Feedback Control
Robot Manipulator Redundancy Resolution
Computing Algorithmic Complexity Using Advance Sampling Technique
Intelligent Engineering Systems through Artificial Neural Networks Volume 18
The Advanced Logical Dynamics Safety Assessment Using System Dynamics Method of Auxiliary Feed Water System (PSAM-0260)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)