Synthetic jets are meso or micro fluidic devices, which operate on the “zero-net-mass-flux” principle. They impart a positive net momentum flux to the external environment, and are able to produce the cooling effect of a fan sans its ducting, reliability issues, and oversized dimensions. As a result, recently their application as electronics cooling devices is gaining momentum. Traditionally, synthetic jets have been sought as a replacement to the fan in many electronic devices. However, in certain large applications, complete replacement of the fan is not feasible, because it is necessary to provide the basic level of cooling over a large area of a printed assembly board. Such applications often pose a question whether synthetic jet would be able to locally provide reasonable enhancement over the forced convection of the fan flow. In the present study, we present the cooling performance of synthetic jets complementing forced convection from a fan. Both experiments and CFD computations are performed to investigate the interaction of the jet flowfield with a cross flow from fan. The inlet velocity, jet disk amplitude, and channel height are varied in the computational simulations to evaluate the impact of these changes on the cooling properties. Overall, both studies show that a synthetic jet is able to pulse and disrupt the boundary layer caused from fan flow, and improve heat transfer up to 4× over forced convection.

This content is only available via PDF.
You do not currently have access to this content.