Two-dimensional natural convective heat transfer from vertical plates has been extensively studied. However, when the width of the plate is relatively small compared to its height, the heat transfer rate can be greater than that predicted by these two-dimensional flow results. Because situations that can be approximately modelled as narrow vertical plates occur in a number of practical situations, there exists a need to be able to predict heat transfer rates from such narrow plates. Attention has here been given to a plate with a uniform surface heat flux. The magnitude of the edge effects will, in general, depend on the boundary conditions existing near the edge of the plate. To examine this effect, two situations have been considered. In one, the heated plate is imbedded in a large plane adiabatic surface, the surfaces of the heated plane and the adiabatic surface being in the same plane while in the second there are plane adiabatic surfaces above and below the heated plate but the edge of the plate is directly exposed to the surrounding fluid. The flow has been assumed to be steady and laminar and it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated by using the Boussinesq approach. It has also been assumed that the flow is symmetrical about the vertical centre-plane of the plate. The solution has been obtained by numerically solving the full three-dimensional form of the governing equations, these equations being written in terms of dimensionless variables. Results have only been obtained for a Prandtl number of 0.7. A wide range of the other governing parameters have been considered for both edge situations and the conditions under which three dimensional flow effects can be neglected have been deduced.

This content is only available via PDF.
You do not currently have access to this content.