Many insects are able to sense their surrounding fluid environment through induced motion of their filiform hairs. The mechanism by which the insect can sense a wide range of input signals using the canopy of filiform hairs of different length and orientation is of great interest. Most of the previous filiform hair models have focused on a single, rigid hair in an idealized air field. We have developed [1] a model for a canopy of filiform hairs that are mechanically coupled to the surrounding air. The model equations are based on the penalty immersed boundary method. The key difference between the penalty immersed boundary method and the traditional immersed boundary method is the addition of forces to account for density differences between the immersed solid (the filiform hairs) and the surrounding fluid (air). In this work we validate the model by comparing the model predictions to experimental results on cricket Acheta domestica cercal system.

This content is only available via PDF.
You do not currently have access to this content.