The frictional pressure drops of gas-liquid two-phase flow in mini-micro pipes and at vena contract and expansion were investigated experimentally and analytically. Pressure drops of straight pipe, sudden enlargement and sudden contraction of gas-liquid two-phase flow in mini-pipes were measured. Test liquid was water at room temperature; test gas was argon. The diameter of the test mini-pipe was 0.5, 0.25 and 0.12 mm, respectively; the length was 500, 250 and 50 mm, respectively. The cross-sectional ratio of the contraction was about 1000; the ratio of the enlargement was about 0.001. The pressure drop data and the flow pattern were collected over 3.0 < UG < 130 m/s for the superficial gas velocity and 0.02 < UL < 6.0 m/s for the superficial liquid velocity. The two-phase friction multiplier data for D > 0.5 mm showed to be in good agreement with the conventional correlations. On the other hand, the two-phase friction multiplier data for D < 0.25 mm differed from the calculated values by the conventional correlations. Then, thickness of liquid film around a gas plug and size of gas core were estimated and the effect of frictional pressure drop on channel size was discussed through Knudsen Number of gas and instability on liquid-gas interface. Namely, the effect of mini-pipe was rarefaction effects, Kn<0.1. New correlation of frictional pressure drop of gas-liquid two-phase flow is proposed for mini pipes. The coefficients of sudden enlargement and sudden contraction in mini-pipes for the gas-water two-phase flow were modified from the present experimental results. The experimental results were also examined through numerical simulation by a commercial code.

This content is only available via PDF.
You do not currently have access to this content.