A combined-cycle power plant is proposed that uses heat from a high-temperature nuclear reactor and hydrogen produced by the high-temperature reactor to meet base-load and peak-load electrical demands. For base-load electricity production, air is compressed; flows through a heat exchanger, where it is heated to between 700 and 900°C; and exits through a high-temperature gas turbine to produce electricity. The heat, via an intermediate heat-transport loop, is provided by a high-temperature reactor. The hot exhaust from the Brayton-cycle turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, after nuclear heating of the compressed air, hydrogen is injected into the combustion chamber, combusts, and heats the air to 1300°C—the operating conditions for a standard natural-gas-fired combined-cycle plant. This process increases the plant efficiency and power output. Hydrogen is produced at night by electrolysis or other methods using energy from the nuclear reactor and is stored until needed. Therefore, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the hydrogen and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the grid.
Skip Nav Destination
ASME 2007 International Mechanical Engineering Congress and Exposition
November 11–15, 2007
Seattle, Washington, USA
Conference Sponsors:
- ASME
ISBN:
0-7918-4300-9
PROCEEDINGS PAPER
An Air-Brayton Nuclear-Hydrogen Combined-Cycle Peak- and Base-Load Electric Plant
Charles Forsberg
Charles Forsberg
Oak Ridge National Laboratory, Oak Ridge, TN
Search for other works by this author on:
Charles Forsberg
Oak Ridge National Laboratory, Oak Ridge, TN
Paper No:
IMECE2007-43907, pp. 561-567; 7 pages
Published Online:
May 22, 2009
Citation
Forsberg, C. "An Air-Brayton Nuclear-Hydrogen Combined-Cycle Peak- and Base-Load Electric Plant." Proceedings of the ASME 2007 International Mechanical Engineering Congress and Exposition. Volume 6: Energy Systems: Analysis, Thermodynamics and Sustainability. Seattle, Washington, USA. November 11–15, 2007. pp. 561-567. ASME. https://doi.org/10.1115/IMECE2007-43907
Download citation file:
16
Views
Related Proceedings Papers
Related Articles
Degradation Effects on Combined Cycle Power Plant Performance—Part III: Gas and Steam Turbine Component Degradation Effects
J. Eng. Gas Turbines Power (April,2004)
A Computational Model of a Combined Cycle Power Generation Unit
J. Energy Resour. Technol (September,2004)
Importance of Auxiliary Power Consumption for Combined Cycle Performance
J. Eng. Gas Turbines Power (April,2011)
Related Chapters
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Lay-Up and Start-Up Practices
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration