Out-of-plane displacement (warpage) has been a major reliability concern for board-level electronic packaging. Printed wiring board (PWB) and component warpage results from CTE mismatch among the materials that make up the PWB assembly (PWBA). Warpage occurring during surface-mount assembly reflow processes and normal operations may lead to serious reliability problems. In this paper, a projection moire´ warpage measurement system and two types of automatic image segmentation algorithms were presented. In order to use the projection moire´ technique to separately determine the warpage of a PWB and assembled electronic packages in a PWBA, two image segmentation algorithms based on mask image models and active contour models (snakes) were developed. They were used to detect package locations in a PWBA displacement image generated by the projection moire´ system. The performances of the mask image and snake approaches based on their resolutions, processing rates, and measurement efficiencies were evaluated in this research. Real-time composite Hermite surface models were constructed to estimate the PWB warpage values underneath the electronic packages. The above automatic image segmentation algorithms were integrated with the projection moire´ system to accurately evaluate the warpage of PWBs and assembled chip packages individually.

This content is only available via PDF.
You do not currently have access to this content.