A prototype Electro-Hydraulic Actuator (EHA) system has demonstrated a positional accuracy in the order of 100 nanometer. Linearized models of the EHA have been formulated and have shown reasonable correlation to the performance of the physical EHA. However, these models predict zero steady state error (an impossible situation given the physical limitations of seals, friction etc.). Further, the prototype EHA indicates that the cut-off frequency decreases as the amplitude of the input signal decreases. This is not predicted by the linear models. In this paper the Bond-graph large scale modeling technique was used as the basis to formulate the describing equations of the EHA. The model was made increasingly more complex by introducing observable nonlinearities into the model. It was found that the introduction of nonlinear friction did show results whose trends were consistent with those observed experimentally. Assumed nonlinearities in the bulk modulus could not be substantiated. In addition, some of the observed experimental trends could not be predicted (such as order change) and pose additional challenges to be solved before a complete understanding of the true physics of the EHA can be realized.

This content is only available via PDF.
You do not currently have access to this content.