The motivation of this work is to develop adhesive layers from epoxy based nanocomposites using carbon nanotubes (CNTs) for use in thermal management applications in microelectronic devices. The focus of the experimental characterization is to measure the enhancement of electrical and thermal conductivities of polymeric nanocomposites consisting of XD grade CNTs as a function of a range of weight percentages. Comparison of the results obtained for these CNT-epoxy nanocomposites are made with other nanocomposite results from the literature and with initial micromechanics modeling efforts. The micromechanics model is centered on the use of the generalized self-consistent composite cylinders method in conjunction with multi-phase averaging methods, and is employed to predict the effective electrical and thermal properties of nanocomposites with randomly oriented CNTs, where the hollow nature of the CNTs and the possible presence of interphase regions precludes the direct use of the Eshelby solution. Interphase regions are identified to phenomenologically introduce nanoscale effects such as the thermal Kapitza resistance and electron hopping. It is observed that, as a result of the different character of the nanoscale effects associated with electrical and thermal properties, nanotube-polymer nanocomposites demonstrate a percolation behavior in electrical conductivity not observed in thermal conductivity.
Skip Nav Destination
ASME 2007 International Mechanical Engineering Congress and Exposition
November 11–15, 2007
Seattle, Washington, USA
Conference Sponsors:
- ASME
ISBN:
0-7918-4295-9
PROCEEDINGS PAPER
Electrical and Thermal Conductivities of Carbon Nanotube-Epoxy Composites: Modeling and Characterization
Gary D. Seidel,
Gary D. Seidel
Texas A&M University, College Station, TX
Search for other works by this author on:
Yordanos Bisrat,
Yordanos Bisrat
Texas A&M University, College Station, TX
Search for other works by this author on:
Dimitris C. Lagoudas
Dimitris C. Lagoudas
Texas A&M University, College Station, TX
Search for other works by this author on:
Gary D. Seidel
Texas A&M University, College Station, TX
Yordanos Bisrat
Texas A&M University, College Station, TX
Dimitris C. Lagoudas
Texas A&M University, College Station, TX
Paper No:
IMECE2007-42339, pp. 245-253; 9 pages
Published Online:
May 22, 2009
Citation
Seidel, GD, Bisrat, Y, & Lagoudas, DC. "Electrical and Thermal Conductivities of Carbon Nanotube-Epoxy Composites: Modeling and Characterization." Proceedings of the ASME 2007 International Mechanical Engineering Congress and Exposition. Volume 1: Advances in Aerospace Technology. Seattle, Washington, USA. November 11–15, 2007. pp. 245-253. ASME. https://doi.org/10.1115/IMECE2007-42339
Download citation file:
24
Views
Related Proceedings Papers
Related Articles
A Micromechanics Model for the Thermal Conductivity of Nanotube-Polymer Nanocomposites
J. Appl. Mech (July,2008)
Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics
J. Heat Transfer (April,2007)
The Influence of Carbon Nanotube Aspect Ratio on Thermal Conductivity Enhancement in Nanotube–Polymer Composites
J. Heat Transfer (January,2014)
Related Chapters
Layer Arrangement Impact on the Electromechanical Performance of a Five-Layer Multifunctional Smart Sandwich Plate
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
Preparation and Thermal Property of Phase Change Nanocomposites Using Carbon Nanotubes as Additives
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
PVDF/CO 3 O 4 Nanocomposites: Porosity, Crystallinity and Conductivity
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)