This paper presents detailed results on noise modeling and experimental characterization applicable to piezoresistive MEMS transducers using a piezoresistive MEMS microphone as an example. To accurately model the lower limit of the dynamic range of piezoresistive MEMS transducers, a detailed noise equivalent circuit, piezoresistor noise model, and experimental noise measurements are needed. From the sensitivity and the total root-mean-square output noise, the minimum detectable signal (MDS) may be computed. Key experimental results include comparison of the DC bridge and AC bridge noise measurement techniques and use of the AC measurement technique when the piezoresistive transducer output noise is less than the low frequency DC setup noise.

1.
Spencer
R. R.
, et al.,
A theoretical study of transducer noise in piezoresistive and capacitive silicon pressure sensors. Electron Devices
,
IEEE Transactions on
,
1988
.
35
(
8)
: p.
1289
1289
.
2.
Senturia, S.D., Microsystem Design. 2001, Boston: Kluwer Academic Publishers, Ch. 16.
3.
Papila, M., et al., Piezoresistive Microphone Design Pareto Optimization: Tradeoff Between Sensitivity and Noise Floor. IEEE J. Microelectromechanical Systems, 2006 in press.
4.
Harley
J. A.
and
Kenny
T. W.
,
1/f noise considerations for the design and process optimization of piezoresistive cantilevers
.
Microelectromechanical Systems, Journal of
,
2000
.
9
(
2)
: p.
226
226
.
5.
Smith
C. S.
,
Piezoresistance Effect in Germanium and Silicon
.
Physical Review
,
1954
.
94
(
1)
: p.
42
42
.
6.
Mason
W. P.
and
Thurston
R. N.
,
Use of Piezoresistive Materials in the Measurement of Displacement, Force, and Torque
.
The Journal of the Acoustical Society of America
,
1957
.
29
(
10)
: p.
1096
1096
.
7.
Burns
F. P.
,
Piezoresistive Semiconductor Microphone
.
The Journal of the Acoustical Society of America
,
1957
.
29
(
2)
: p.
248
248
.
8.
Wise, K.D. and S.K. Clark, Diaphragm formation and pressure sensitivity in batch-fabricated silicon pressure sensors. 1978 International Electron Devices Meeting, 1978: p. 96.
9.
Arnold, D.P., et al. Piezoresistive Microphone for Aeroacoustic Measurements. in Proceedings ASME IMECE. 2001. New York City, New York: ASME.
10.
Harley
J. A.
and
Kenny
T. W.
,
High-sensitivity piezoresistive cantilevers under 1000 [A-ring] thick
.
Applied Physics Letters
,
1999
.
75
(
2)
: p.
289
289
.
11.
Rossi, M. and P.R.W. Roe, Acoustics and Electroacoustics. 1988: Artech House.
12.
Johnson
J. B.
,
Thermal Agitation of Electricity in Conductors
.
Physical Review
,
1928
.
32
(
1)
: p.
97
97
.
13.
Nyquist
H.
,
Thermal Agitation of Electric Charge in Conductors
.
Physical Review
,
1928
.
32
(
1)
: p.
110
110
.
14.
Gabrielson
T. B.
,
Mechanical-thermal noise in micromachined acoustic and vibration sensors
.
Electron Devices, IEEE Transactions on
,
1993
.
40
(
5)
: p.
903
903
.
15.
McWhorter, A., 1/f Noise and Germanium Surface Properties, in Semiconductor Surface Physics. 1957, University of Pennsylvania: Philadelphia. p. 207–228.
16.
Hooge
F. N.
,
1/f noise sources. Electron Devices
,
IEEE Transactions on
,
1994
.
41
(
11)
: p.
1926
1926
.
17.
Dieme
R.
, et al.,
Sources of excess noise in silicon piezoresistive microphones
.
The Journal of the Acoustical Society of America
,
2006
.
119
(
5)
: p.
2710
2710
.
18.
Kulite. Model MIC-093. [cited; Available from: http://www.kulite.com.
19.
Lorteije
J. H. J.
and
Hoppenbrouwers
A. M. H.
,
Amplitude Modulation by 1/f Noise in Resistors Results in 1/Δf Noise
.
Philips Res. Repts.
,
1971
.
26
: p.
29
39
.
This content is only available via PDF.
You do not currently have access to this content.