We describe the implementation of a general interpolation technique which allows the accurate imposition of the Dirichlet, Neumann and mixed boundary conditions on complex geometries when using the immersed boundary technique on Cartesian grids. The scheme is general in that it does not involve any special treatment to handle either one of the three types of boundary conditions. The accuracy of the interpolation algorithm on the boundary is assessed using three heat transfer problems: (1) forced convection over a cylinder placed in an unbounded flow, (2) natural convection on a cylinder placed inside a cavity, and (3) heat diffusion inside an annulus. The results show that the accuracy of the scheme is second order and are in agreement with analytical and/or numerical data.

1.
Peskin
 
C. S.
,
1972
. “
Flow patterns around heart valves: A numerical method
”.
J. Comput. Phys.
,
10
, pp.
252
271
.
2.
Mittal
 
R.
, and
Iaccarino
 
G.
,
2005
. “
Immersed boundary methods
”.
Annu. Rev. of Fluid Mech.
,
37
, pp.
239
261
.
3.
Tyagi
 
M.
, and
Acharya
 
S.
,
2005
. “
Large eddy simulation of turbulent flows in complex and moving rigid geometries using the immersed bounary method
”.
Int. J. Numer: Methods Fluids
,
48
, pp.
691
722
.
4.
Kim
 
J.
,
Kim
 
D.
, and
Choi
 
H.
,
2001
. “
An immersed-boundary finite-volume method for simulations of flow in complex geometries
”.
J. Comput. Phys.
,
171
, pp.
132
150
.
5.
Zhang
 
L.
,
Gerstenberger
 
A.
,
Wang
 
X.
, and
Liu
 
W. K.
,
2004
. “
Immersed finite element method
”.
Comp. Meth. Appl. Mech. & Engng
,
193
, pp.
2051
2067
.
6.
Peskin, C. S., 2002. “The immersed boundary method”. Acta Numerica, pp. 479–517.
7.
Udaykumar
 
H. S.
,
Mittal
 
R.
, and
Rampunggoon
 
P.
,
2001
. “
Interface tracking finite volume method for complex solid-fluid interactions on fixedmeshes
”.
Communications in Numerical Methods in Engineering
,
18
, pp.
89
97
.
8.
Pacheco
 
J. R.
,
Pacheco-Vega
 
A.
,
Rodic´
 
T.
, and
Peck
 
R. E.
,
2005
. “
Numerical simulations of heat transfer and fluid flow problems using an immersed-boundary finite-volume method on non-staggered grids
”.
Numer. Heat Transfer, Part B
,
48
, pp.
1
24
.
9.
Kim
 
J.
, and
Choi
 
H.
,
2004
. “
An immersed-boundary finite-volume method for simulations of heat transfer in complex geometries
”.
K.S.M.E. Int. J.
,
18
(
6)
, pp.
1026
1035
.
10.
Fadlun
 
E. A.
,
Verzicco
 
R.
,
Orlandi
 
P.
, and
Mohd-Yusof
 
J.
,
2000
. “
Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations
”.
J. Comput. Phys.
,
161
, pp.
35
60
.
11.
Pacheco-Vega, A., Pacheco, J. R., and Rodic´, T., 2006. On the mixed-type boundary condition for diffusion of heat on cartesian grids. (preprint).
12.
Sparrow
 
E.
, and
Gregg
 
J.
,
1958
. “
Similar solutions for free convection from a non-isothermal vertical plate
”.
ASME J. Heat Transfer
,
80
, pp.
379
386
.
13.
Mohd-Yusof, J., 1997. Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. Tech. rep., Center for Turbulence research, NASA Ames/Stanford University.
14.
Tseng
 
Y. H.
, and
Ferziger
 
J. H.
,
2003
. “
A ghost-cell immersed boundary method for flow in complex geometry
”.
J.Comput. Phys.
,
192
(
2)
, pp.
593
623
.
15.
Pan
 
D.
,
2006
. “
An immersed boundary method on unstructured cartesian meshes for incompressible flows with heat transfer
”.
Numer. Heat Transfer, Part B
,
49
, pp.
277
297
.
16.
Eckert
 
E. R. G.
, and
Soehngen
 
E.
,
1952
. “
Distribution of heat-transfer coefficients around circular cylinders in cross-flow at reynolds numbers from 20 to 500
”.
Trans. ASME
,
75
, pp.
343
347
.
17.
Demirdzˆic´
 
I.
,
Lilek
 
Zˆ.
, and
Peric´
 
M.
,
1992
. “
Fluid flow and heat transfer test problems for non-orthogonal grids: bench-mark solutions
”.
Int. J. Numer. Methods Fluids
,
15
, pp.
329
354
.
18.
Barozzi
 
G.
,
Bussi
 
C.
, and
Corticelli
 
M.
,
2004
. “
A fast cartesian scheme for unsteady heat diffusion on irregular domains
”.
Numer. Heat Transfer, Part B
,
46
(
1)
, pp.
59
77
.
19.
Carslaw, H., and Jaeger, J., 1986. Conduction of Heat in Solids, second ed. Oxford University Press, Oxford, UK.
This content is only available via PDF.
You do not currently have access to this content.