A numerical model for a loose packing process of spherical particles is presented. The simulation model starts with randomly choosing a sphere according to a pre-generated continuous particle-size distribution, and then dropping the sphere into a dimension-specified box, and obtaining its final position by using dropping and rolling rules which are derived from similar physical process of spheres dropping in the gravitational field to minimize its gravity potential. Effects of three different particle-size distributions on the packing structure were investigated. Analysis on the physical background of the powder-based manufacturing process is additionally applied to produce optimal packing parameters of bimodal and Gaussian distributions to improve the quality of the fabricated parts. The results showed that higher packing density can be obtained using bimodal size distribution with particle-size ratio from 1.5 to 2.0 and the mixture composition around n2:n1=6:4. For particle size with a Gaussian distribution, the particle radii should be limited in a narrow range around 0.67 to 1.5.

1.
Visscher
W. M.
,
Bolsterli
M.
,
Random Packing of Equal and Unequal Spheres in Two and Three Dimensions
.
Nature
, Vol.
329
, pp.
504
507
,
1972
2.
P. N. Pusey, in: J. P. Hansen, D. Levesque, J. Zinn-Justin (Eds), Liquids, Freezing, and the Glass Transition, Elsevier, Amsterdam, 1991
3.
R. Zallen, The Physics of Amorphous Solids, Wiley, New York, 1983.
4.
Meakin
P.
,
Skjettorp
A. T.
,
Application of Experimental and Numerical Models to the Physics of Multiparticle systems
,
Advance in physics
, Vol.
42
, pp.
1
127
,
1993
.
5.
Bernal
J. D.
,
Mason
J.
,
Coordination of Randomly Packed Spheres
,
Nature
, Vol.
188
, pp.
910
911
,
1960
.
6.
Roblee
L. H. S.
,
Baird
R. M.
and
Tierney
J. W.
,
Radial Porosity Variations in Packed Beds
,
AIChE Journal
, Vol.
4
, pp.
460
464
.
7.
J.-P. Kruth, Rapid Prototyping, A New Application of Physical and Chemical Process for Material Accretion Manufacturing. In: Proceedings of the 11th International Symposium for Electromachining, Lausanne, pp. 3–28, 1995.
8.
Agarwala
M.
,
Bourell
D.
,
Beaman
J.
,
Marcus
H.
,
Barlow
J.
,
Direct Selective Laser Sintering of Metals
,
Rapid Prototyping Journal
, Vol.
1
, pp.
26
36
,
1995
.
9.
Das
S.
,
Beaman
J.
,
Wohlert
M.
,
Bourell
D.
,
Direct Laser Freeform Fabrication of High Performance Metal Components
,
Rapid Prototyping Journal
, Vol.
4
, pp.
112
117
,
1998
.
10.
Tolochko
N. K.
,
Mozzharov
S. E.
,
Yadroitsev
I. A.
,
Laoui
T.
,
Froyen
L.
,
Titov
V. I.
,
Ignatiev
M. B.
,
Bailing Processes During Selective Laser Treatment of Powders
,
Rapid Prototyping Journal
, Vol.
10
, pp.
78
87
,
2004
11.
D. E. Bunnell, Fundamentals of Selective Laser Sintering of Metals, PhD dissertation, University of Texas at Austin, Austin, TX, 1995.
12.
T. Manzur, T. Demaria, W. Chen, C. Roychoudhuri, Potential Role of High Power Laser Diode in Manufacturing, SPIE Photonics West Conference, San Jose, CA, 1996
13.
Fischer
P.
,
Romano
V.
,
Weber
H. P.
,
karapatis
N. P.
,
Boillat
E.
,
Glardon
R.
,
Sintering of Commercially Pure Titanium Powder with a Na:YAG Laser Sourse
,
Acta Materialia
, Vol.
51
, pp.
1651
1662
,
2003
14.
Scott
G. D.
,
Kilgour
D. M.
,
The Density of Random Close Packing of Spheres
,
J. Phys. D
, Vol.
2
, pp.
863
863
,
1969
.
15.
Finney
J. L.
,
Random Packings and the Structure of Simple Liquids I. the Geometry of Random Close Packing
,
Proc. R. Soc. London, Ser. A
, Vol.
319
, pp.
479
479
,
1970
.
16.
Moscinski
J.
,
Bargie
M.
,
Rycerz
ZA.
,
Jacobs
PWM.
,
The Force-biased Algorithm for the Irregular Close Packing of Equal Hard Spheres
,
Molecular Simulation
, Vol.
3
, pp.
201
212
,
1989
.
17.
Jodrey
W. S.
,
Tory
E. M.
,
Computer Simulation of Isotropic, Homogeneous, Dense Random Packing of Equal Spheres
,
Powder Technology
, Vol.
30
, pp.
111
118
,
1981
.
18.
Jodrey
W. S.
,
Tory
E. M.
,
Computer Simulation of Close Random Packing of Equal Spheres
,
Physical Review A
, Vol.
32
, pp.
2347
2351
,
1985
19.
Tory
E. M.
,
Church
B. H.
,
Tam
M. K.
,
Ratner
M.
,
Simulated Random Packing of Equal Spheres
,
The Canadian Journal of Chemical Engineering
, Vol.
51
, pp.
484
493
,
1973
20.
Jodrey
W. S.
,
Tory
E. M.
,
Simulation of Random Packing of Spheres
,
Simulation
, Vol.
32
, pp.
1
12
,
1979
21.
Kristiansen
KD. L.
,
Wouterse
A.
,
Philipse
A.
,
Simulation of Random Packing of Binary Sphere Mixtures by Mechanical Contraction
,
Physica A.
Vol.
358
, pp.
249
262
,
2005
22.
M. N. Rahaman, Ceramic Processing and Sintering, Marcel Dekker Inc., New York, 1995.
This content is only available via PDF.
You do not currently have access to this content.