Nanofluids, which are suspensions of nano-sized solid particles in a liquid medium, show remarkable enhancement in thermal conductivity compared to the base fluid. Nanofluids are a promising candidate for advanced heat transfer applications such as microelectronics cooling. While the thermal conductivity of nanofluids has been measured in the past using conventional techniques such as the transient hot wire method, this work presents the application of the 3-omega (3-ω) method for this purpose. The theoretical model for 3-ω response of a heater device with de-ionized (DI) water is verified by comparing with experimental measurements. Following this validation, the effective thermal conductivity of Al2O3 nanofluids in DI water and ethylene glycol are measured. The measured values are found to be in good agreement with previous works. In addition, interesting effects in the thermal response due to agglomeration and sedimentation of nanoparticles are observed.

1.
Koo
J.
, and
Kleinstreuer
C.
,
2005
, “
Laminar Nanofluid Flow in Microheat-Sinks
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2652
2661
.
2.
Koo, J.-M., Jiang, L., Zhang, L., Zhou, P., Banerjee, S. S., Kenny, T. W., Santiago, J. G., and Goodson, K. E., 2001, “Modeling of Two-phase Microchannel Heat Sinks for VLSI Chips,” in Proc. Int. MEMS Workshop, Jan. 2001, pp. 422–426.
3.
Rowe, D. M., 1995, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL.
4.
Keblinski
P.
,
Eastman
J. A.
, and
Cahill
D. G.
,
2005
, “
Nanofluids for Thermal Transport
,”
Materials Today
,
8
, pp.
36
44
.
5.
Maxwell, J. C., 1892, A Treatise on Electricity and Magnetism, Oxford University Press, London.
6.
Choi
S. U. -S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids with Nanoparticles
,” in Developments and Applications of Non-Newtonian Flows, D. A. Siginer, and H. P. Wang, eds.,
ASME
,
FED-Vol. 231/MD-Vol. 66
, pp.
99
105
.
7.
Lee
S.
,
Choi
S. U. -S.
,
Li
S.
, and
Eastman
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
J. Heat Transfer
,
121
, pp.
280
289
.
8.
Xie
H.
,
Lee
H.
,
Youn
W.
, and
Choi
M.
,
2003
, “
Nanofluids Containing Multiwalled Carbon Nanotubes and their Enhanced Thermal Conductivities
”,
J. Appl. Phys.
,
94
, pp.
4967
4971
9.
Wang
X.
,
Xu
X.
, and
Choi
S. U. -S.
,
1999
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
, pp.
474
480
.
10.
Das
S. K.
,
Putra
N.
,
Thiesen
P.
, and
Roetzel
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
J. Heat Transfer
,
125
, pp.
567
574
.
11.
Cahill
D. G.
,
1990
, “
Thermal Conductivity Measurement from 30 to 700K: the 3ω method
,”
Rev. Sci. Instrum.
,
61
,
802
808
.
12.
Moon
I. K.
,
Jeong
Y. H.
, and
Kwun
S. I.
,
1996
, “
The 3ω Technique for Measuring Dynamic Specific Heat and Thermal Conductivity of a Liquid or Solid
,”
Rev. Sci. Instrum.
67
, pp.
29
35
.
13.
Chen
F.
,
Shulman
J.
,
Xue
Y.
,
Chu
C. W.
, and
Nolas
G. S.
,
2004
, “
Thermal Conductivity Measurement Under Hydrostatic Pressure Using the 3ω Method
,”
Rev. Sci. Instrum.
75
, pp.
4578
4584
.
14.
Turns, S. R., 2000, An Introduction to Combustion - Concepts and Applications, International Editions, McGraw-Hill, Singapore.
15.
Hollands
K. G. T.
,
Raithby
G. D.
, and
Konicek
L.
,
1975
, “
Correlation Equations for Free Convection Heat Transfer in Horizontal Layers of Air and Water
”,
Int. J. Heat Mass Transfer
,
18
, pp.
879
884
.
16.
Oosthuizen, P. H., and Naylor, D., 1999, An Introduction to Convective Heat Transfer Analysis, International Editions, McGraw-Hill, Singapore.
17.
Markarian
N.
,
Yeksel
M.
,
Khusid
B.
,
Farmer
K. R.
, and
Acrivos
A.
,
2003
, “
Particle Motions and Segregation in Dielectrophoretic Microfluidics
”,
J. Appl. Phys.
,
94
, pp.
4160
4169
.
18.
Chen
X. Q.
,
Saito
T.
,
Yamada
H.
, and
Matsushige
K.
,
2001
, “
Aligning Single-Wall Carbon Nanotubes with an Alternating-Current Electric Field
”,
Appl. Phys. Lett.
,
78
, pp.
3714
3716
.
This content is only available via PDF.
You do not currently have access to this content.