Confined structures presumably offer enhanced performance of thermoelectric devices. 1) Interfaces and boundaries create scattering sites for phonons, which reduces the thermal conductivity. 2) Reduced dimensionality increases the local density of states near the Fermi level, which increases the Seebeck coefficient. From these two phenomena, the net effect should be an increase in ZT, the performance parameter used to evaluate different materials and structures. These effects have been measured and modeled, but none of the models attempts to quantify the electron-phonon coupled effects particularly in the regime where quantum and scattering influences are found. Using the non-equilibrium Green's function (NEGF) approach, quantum wells composed of Si and Ge are studied and the important physics isolated. Results show a competing effect between the decrease in the electrical conductivity due to scattering with the increase in electrical conductivity with doping, leading to 77% decrease in the value of the power factor for the case of electron-optical phonon scattering.

1.
Tritt, T. M., Mahan, G., Kanatzidis, M. G., Nolas, G. S. and Mandrus, D., 2001, “Thermoelectric Materials 2000. The Next Generation Materials for Small-Scale Refrigeration and Power Generation,” Material Research Society, 626.
2.
Hicks
L. D.
and
Dresselhaus
M. S.
,
1993
, “
Effect of Quantum Well Structures on the Thermoelectric Figure of Merit
,”
Physical Review B
,
47
,
12
, pp.
727
731
.
3.
Whitlow
L. W.
and
Hirano
T.
,
1995
, “
Superlattice Applications to Thermoelectricity
,”
Journal of Applied Physics
,
78
,
9
, pp.
5460
5466
.
4.
Hicks
L. D.
,
Harman
T. C.
, and
Dresselhaus
M. S.
,
1993
, “
Use of Quantum-well Superlattices to Obtain a High Figure of Merit from Non-conventional Thermoelectric Materials
,”
Applied Physics Letters
,
63
,
23
, pp.
3230
3232
.
5.
Tritt, T. M., 2001, “Recent Trends in Thermoelectric Materials Research III,” Semiconductors and Semimetals, 71, Academic Press, London.
6.
Balandin
A
and
Wang
K. L.
,
1998
, “
Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well
,”
Physical Review B
,
58
,
3
, pp.
1544
1549
.
7.
Balandin
A
and
Wang
K. L.
,
1998
, “
Effect of phonon confinement on the thermoelectric figure of merit of quantum wells
,”
Journal of Applied Physics
,
84
,
11
, pp.
6149
6153
.
8.
Simkin
M. V.
, and
Mahan
G. D.
,
2000
, “
Minimum Thermal Conductivity of Superlattices
,”
Physical Review Letters
,
84
,
5
, pp.
927
930
.
9.
Chen
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattice
,”
Physical Review B
,
57
,
23
, pp.
14958
14973
.
10.
Chen
G.
,
1999
, “
Phonon Wave Heat Conduction in Thin Films and Superlattices
,”
Journal of Heat Transfer
,
121
, pp.
945
953
.
11.
Koga
T.
,
Cronin
S. B.
,
Dresselhaus
M. S.
,
Liu
J. L.
and
Wang
K. L.
,
2000
, “
Experimental proof-of-principle Investigation of enhanced Z3DT in 001 oriented Si/Ge superlattices
,”
Applied Physics Letters
,
77
,
10
, pp.
1
3
.
12.
Dresselhaus, M. S., 2003, “Nanostructures and energy conversion,” Proceedings of 2003 Rohsenhow Symposium on Future Trends of Heat Transfer.
13.
Lundstrom, M. S., 2000 “Fundamentals of Carrier Transport,” Cambridge University Press, New York.
14.
Packan
P. A.
,
1999
, “
Pushing the Limits
,”
Science
,
285
, pp.
2079
2080
.
15.
Rahman, A., Ghosh, A and Lundstrom, M., 2003, “Assessment of Ge n-MOSFETs by Quantum Simulation,” Technical Digest of International Electronic Devices Meeting, pp. 471–473.
16.
Mazumder
P.
,
Kulkarni
S.
,
Bhattacharya
M.
,
Sun
J. P.
and
Haddad
G. I.
,
1998
, “
Digital Circuit Applications of Resonant Tunneling Devices
,”
Proceedings of the IEEE
,
86
,
4
, pp.
664
686
.
17.
Lugli
P.
1990
, “
The Monte Carlo Method for Semiconductor Device and Process Modeling
.”
IEEE transactions on computer-aided design of integrated circuits and systems
,
9
,
11
, pp.
1164
1176
.
18.
Mazumder
S
and
Majumdar
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films including Dispersion and Polarization
,”
Journal of Heat Transfer
123
, pp.
749
759
.
19.
Lai
J
and
Majumdar
A.
,
1996
, “
Concurrent Thermal and Electrical Modeling of Sub-micrometer Silicon Devices
,”
Journal of Applied Physics
,
79
,
9
, pp.
7353
7361
.
20.
Raman
A.
,
Walker
D. G.
and
Fisher
T. S.
,
2003
, “
Simulation of Nonequilibrium Thermal Effects in Power LDMOS Transistors
,”
Solid-State Electronics
,
47
,
8
, pp.
1265
1273
.
21.
Murthy
J. Y.
and
Mathur
S. R.
,
2002
, “
Computation of Sub-micron Thermal Transport Using an Unstructured Finite Volume Method
,”
Journal of Heat Transfer
,
124
,
6
, pp.
1176
1181
.
22.
Asenov
A.
,
Watling
J. R.
,
Brown
A. R.
and
Ferry
D. K.
,
2002
, “
The Use of Quantum Potentials for Confinement and Tunneling in Semiconductor Devices
,”
Journal of Computational Electronics
,
1
, pp.
503
513
.
23.
Tang
T. W.
and
Wu
B.
,
2004
, “
Quantum Correction for the Monte Carlo Simulation via the Effective Conduction-band Edge Equation
,”
Semiconductor Science and Technology
,
19
, pp.
54
60
.
24.
Lent
C., S.
and
Kirkner
D., J.
,
1990
, “
The Quantum Transmitting Boundary Method
,”
Journal of Applied Physics
,
67
,
10
, pp.
6353
6359
.
25.
Laux
S., E.
,
Kumar
A.
and
Fischetti
M., V.
,
2002
, “
Ballistic FET Modeling Using QDAME: Quantum Device Analysis by Modal Evaluation
,”
IEEE Transactions on Nanotechnology
,
1
,
4
, pp.
255
259
.
26.
Datta
S.
,
2000
, “
Nanoscale Device Simulation: The Green’s Function Formalism
,”
Superlattices and Microstructures
,
28
, pp.
253
278
.
27.
Datta, S., 2005, “Quantum Transport: Atom to Transistor,” Cambridge University Press, New York.
28.
Szafer
A.
and
Stone
A. D.
,
1989
, “
Theory of Quantum Conduction through a Constriction
,”
Physical Review Letters
,
62
, pp.
300
303
.
29.
Dismukes
J. P.
,
Ekstrom
L.
,
Steigmeier
E. F.
,
Kudman
I.
and
beers
D. S.
,
1964
, “
Thermal and Electrical Properties of Highly Doped Ge-Si Alloys upto 13000K
”,
Journal of Applied Physics
,
10
,
35
, pp.
2899
2907
.
30.
Yang
B.
,
Liu
J. L.
,
Wang
K. L.
and
Chen
G.
,
2002
, “
Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice
,”
Applied Physics Letters
,
80
,
10
, pp.
1758
1760
.
31.
Yang, B., Liu, J., Wang, K. and Chen, G., 2001, “Characterization of Cross-Plane Thermoelectric Properties of Si/Ge Superlattices, Proceedings of 20th International Conference on Thermoelectrics.
32.
Yang
B.
,
Liu
W. L.
,
Liu
J. L.
,
Wang
K. L.
and
Chen
G.
,
2002
, “
Measurements of Anisotropic Thermoelectric Properties in Superlattices
,”
Applied Physics Letters
,
81
,
19
, pp.
3588
3590
.
This content is only available via PDF.
You do not currently have access to this content.