It has been suggested by theoretical calculations that the thermoelectric figure of merit of bismuth (Bi) nanowires can be much higher than the bulk value because of quantum and classical size effects on electron and phonon transport in the nanowire. Recent advances in nanomaterials synthesis and characterization methods have enabled direct experimental investigation of the nanoscale size effects on thermoelectric properties. In this work, bismuth nanowires are synthesized by vapor deposition into the pores of anodic alumina membranes (AAMs) with variable pore sizes. The thermoelectric properties of individual Bi nanowires obtained from the AAMs were characterized using a new design of a microfabricated device. The presence of a highly stable bismuth oxide coating prohibited good electrical contact with the nanowire, but still allowed for thermal conductivity data to be obtained.

1.
Li
D.
,
Huxtable
S.
,
Abramson
A.
,
Majumdar
A.
,
2005
, “
Thermal Transport in Nanostructured Solid-State Cooling Devices
,”
Journal of Heat Transfer
,
127
, pp.
108
114
.
2.
Shakouri
A.
,
Zhang
Y.
,
2005
, “
On-Chip Solid-State Cooling For Integrated Circuits Using Thin-Film Microrefrigerators
,”
IEEE Transactions on Components and Packaging Technologies
,
28
(
1)
, pp.
65
69
.
3.
Yang
J.
,
Caillet
T.
,
2006
, “
Thermoelectric Materials for Space and Automotive Power Generation
,”
MRS Bulletin
,
31
(March), pp.
224
229
.
4.
Rowe, D. M., 1995, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL.
5.
Lin
Y.
,
Sun
X.
,
Dresselhaus
M.
Theoretical Investigation of Thermoelectric Transport Properties of Cylindrical Bi Nanowires
,”
Physical Review B
,
62
(
7)
, pp.
4610
4623
.
6.
Mingo
N.
,
2004
, “
Thermoelectric Figure of Merit and Maximum Power Factor in III-V Semiconductor Nanowires
,”
Applied Physics Letters
,
84
(
14)
, pp.
2652
2654
.
7.
Chen
G.
,
Shakouri
A.
,
2002
, “
Heat Transfer in Nanostructures for Solid-State Energy Conversion
,”
Journal of Heat Transfer
,
124
, pp.
242
252
.
8.
Cronin, S.B., Lin, Y., Black, M.R., Rabin, O., and Dresselhaus, M.S., 2002, “Thermoelectric Transport of Single Bismuth Nanowires,” IEEE 21st International Conference on Thermoelectrics, Long Beach, CA, pp. 243–248.
9.
Jin
C.
,
Xiang
X.
,
Jia
C.
,
Liu
W.
,
Cai
W.
,
Yao
L.
,
Li
X.
,
2004
, “
Electrochemical Fabrication of Large-Area, Ordered Bi2Te3 Nanowire Arrays
,”
Journal of Physical Chemistry B
,
108
(
6)
, pp.
1844
1847
.
10.
Borca-Tasciuc
D.-A.
,
Chen
G.
,
Prieto
A.
,
Martin-Gonzalez
M. S.
,
Stacy
A.
,
Sands
T.
,
Ryan
M. A.
,
Fleurial
J. P.
,
2004
, “
Thermal Properties of Electrodeposited Bismuth Telluride Nanowires Embedded in Amorphous Alumina
,”
Applied Physics Letters
,
85
(
24)
, pp.
6001
6003
.
11.
Huang, Q., Wang, W., Jia, F., Zhang, J., 2003, “Electrochemically Assembled P-type Bi2Te3 Nanowire Arrays,” IEEE 22nd International Conference on Thermoelectrics, pp. 410–412.
12.
Sander
M.
,
Prieto
A.
,
Gronsky
R.
,
Sands
T.
,
Stacy
A.
,
2002
, “
Fabrication of High-Density, High Aspect Ratio, Large-Area Bismuth Telluride Nanowire Arrays by Electrodepostion into Porous Anodic Alumina Templates
,”
Advanced Materials
,
14
(
9)
, pp.
665
667
.
13.
Zhang
Z.
,
Gekhtman
D.
,
Dresselhaus
M.
, and
Ying
J.
,
1999
, “
Processing and Characterization of Single-Crystalline Ultrafine Bismuth Nanowires
,”
Chem. Mat.
,
11
(
7)
, pp.
1659
1665
.
14.
Lin
Y.
,
Rabin
O.
,
Cronin
S.
,
Ying
J.
, and
Dresselhaus
M.
,
2002
, “
Semimetal-semiconductor Transition in Bi1-xSbx Alloy Nanowires and Their Thermoelectric Properties
,”
Applied Physics Letters
,
81
(
13)
, pp.
2403
2405
.
15.
Heremans
J.
,
Thrush
C. M.
,
Lin
Y.
,
Cronin
S.
,
Zhang
Z.
,
Dresselhaus
M. S.
, and
Mansfield
J. F.
,
2000
, “
Bismuth Nanowire Arrays: Synthesis and Galvanomagnetic Properties
,”
Physical Review B
,
61
(
4)
, pp.
2921
2930
.
16.
Heremans
J.
,
Thrush
C. M.
,
Morelli
D.
, and
Wu
M.
,
2002
, “
Thermoelectric Power of Bismuth Nanocomposites
,”
Physical Review Letters
,
88
(
21)
, Paper No.
216801
216801
.
17.
Heremans, J., 2003, “Review of Thermoelectric and Galvanomagnetic Transport in Bismuth Nanowires,” IEEE 22nd International Conference on Thermoelectrics, pp. 324–329.
18.
Li, D., Prieto, A., Wu, Y., Martin-Gonzalez, M., Stacy, A., Sands, T., Gronsky, R., Yang, P., and Majumdar, A., 2002, “Measurements of Bi2Te3 Nanowire Thermal Conductivity and Seebeck Coefficient,” IEEE 21st International Conference on Thermoelectrics, Long Beach, CA, pp. 333–336.
19.
Zhou
J.
,
Jin
C.
,
Seol
J. H.
,
Li
X.
, and
Shi
L.
,
2005
, “
Thermoelectric Properties of Individual Electrodeposited Bismuth Telluride Nanowires
,”
Applied Physics Letters
,
87
, Paper No.
133109
133109
.
20.
Masuda
H.
,
Satoh
M.
,
1996
, “
Fabrication of Gold Nanodot Arrays Using Anodic Porous Alumina as an Evaporation Mask
,”
Jpn. Journal of Applied Physics
,
35
, Pt.2 (
1B)
, pp.
L126–L129
L126–L129
.
21.
Xu
T.
,
Piner
R.
,
Ruoff
R.
,
2003
, “
An Improved Method to Strip Aluminum from Porous Anodic Alumina Films
,”
Langmuir
,
19
(
4)
, pp.
1443
1445
.
22.
Shi
L.
,
Li
D.
,
Yu
C.
,
Jang
W.
,
Kim
D.
,
Yao
Z.
,
Kim
P.
,
Majumdar
A.
,
2003
, “
Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device
,”
Journal of Heat Transfer
,
125
, pp.
881
888
.
23.
Li
D.
,
Wu
Y.
,
Kim
P.
,
Shi
L.
,
Yang
P.
,
Majumdar
A.
,
2003
, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Applied Physics Letters
,
83
(
14)
, pp.
2934
2936
.
24.
Yu
C.
,
Saha
S.
,
Zhou
J.
,
Shi
L.
,
Cassell
A.
,
Cruden
B.
,
Ngo
Q.
,
Li
J.
,
2006
, “
Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber
,”
Journal of Heat Transfer
,
128
, pp.
234
239
.
25.
Ho
C. Y.
,
Powell
R. W.
,
Liley
P. E.
,
1972
, “
Thermal Conductivity of the Elements
,”
Journal of Physical and Chemical Reference Data
,
1
(
2)
, p.
312
312
.
26.
Gallo
C. F.
,
Chandrasekhar
B. S.
,
Sutler
P. H.
,
1963
, “
Transport Properties of Bismuth Single Crystals
,”
Journal of Applied Physics
,
34
(
1)
, pp.
144
152
This content is only available via PDF.
You do not currently have access to this content.