The propagation of H2-enriched CH4-air triple flames in a nonpremixed jet is investigated numerically. The flames are ignited in a nonuniform jet-mixing layer downstream of the burner. A comprehensive, time-dependent computational model is used to simulate the transient ignition and flame propagation phenomena. The model employs a detailed description of methane-air chemistry and transport properties. Following ignition a well-defined flame is formed that propagates upstream towards the burner along the stoichiometric mixture fraction line. As the flame propagates upstream, the flame speed, which is defined as the normal flamefront velocity at the leading edge with respect to the local gas velocity, increases above or decreases below to the corresponding unstretched laminar flame speed of the stoichiometric planar premixed flame. Although the flame curvature varies as a function of axial position, the flame curvature remains nearly constant for a given flame. As hydrogen is added to the fuel stream the flame curvature during flame propagation remains nearly constant. During the flame propagation process, the hydrodynamic stretch dominates over the curvature-induced stretch. Hydrogen increases the heat release and the component of the velocity perpendicular to the flame increases across the surface, whereas the tangential component remains unchanged. This jump in the perpendicular velocity component bends the velocity vector toward the stoichiometric mixture fraction line. This redirection of the flow is accommodated by the divergence of the streamlines ahead of the flame, resulting in the decrease of the velocity and increase in the hydrodynamic stretch.

1.
NRC and NAE, The Hydrogen Economy, The National Academies Press, Washington D. C., 2004.
2.
Law
C. K.
,
Jomaas
G.
,
Bechtold
J. K.
, “
Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment
,”
Proc. Combust. Inst.
30
:
159
159
(
2000
).
3.
Aung
K. T.
,
Hassan
M. I.
and
Faeth
G. M.
, “
Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure
,”
Combust. Flame
109
(
1997
)
1
1
.
4.
Aung
K. T.
,
Hassan
M. I.
,
Faeth
G. M.
, “
Effects of pressure and nitrogen dilution on flame/stretch interactions of laminar premixed H2/O2/N2 flames
,”
Combust. Flame
112
(
1998
)
1
1
.
5.
Kwon
O. C.
and
Faeth
G. M.
, “
Flame/stretch interactions of premixed hydrogen-fueled flames: measurements and predictions
,”
Combust. Flame
124
(
2001
)
590
590
.
6.
Sinibaldi
Jose O.
,
Driscoll
James F.
,
Mueller
Charles J.
,
Donbar
Jeffrey M.
,
Carter
Campbell D.
, “
Propagation speeds and stretch rates measured along wrinkled flames to assess the theory of flame stretch
,”
Combust. Flame
133
(
2003
)
323
334
.
7.
Katta
V. R.
,
Goss
L. P.
,
Roquemore
W. M.
, “
Effect of nonunity Lewis number and finite-rate chemistry on the dynamics of a hydrogen-air jet diffusion flame
,”
Combust. Flame
96
,
60
60
(
1994
).
8.
Shu
Z.
,
Aggarwal
S. K.
,
Katta
V. R.
,
Puri
I. K.
, “
A numerical investigation of the flame structure of an unsteady inverse partially premixed flame
,”
Combust. Flame
111
,
276
276
(
1997
).
9.
Azzoni
R.
,
Ratti
S.
,
Puri
I. K.
,
Aggarwal
S. K.
, “
Gravity effects on triple flames: Flame structure and flow instability
,”
Phys. Fluids
11
,
3449
3449
(
1999
).
10.
R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer, Hemisphere Publishing Corporation, New York, 1981.
11.
R. C. Reid, J. M. Prausnitz, B. E. Poling, The properties of gases and liquids, McGraw-Hill, New York, 1987.
12.
M. Frenklach, H. Wang, C. -L. Yu, M. Goldenberg, C. T. Bowman, R. K. Hanson, D. F. Davidson, E. J. Chang, G. P. Smith, D. M. Golden, W. C. Gardiner and V. Lissianski, http://www.me.berkeley.edu/gri_mech/; and Gas Research Institute Topical Report: M. Frenklach, H. Wang, M. Goldenberg, G. P. Smith, D. M. Golden, C. T. Bowman, R. K. Hanson, W. C. Gardiner and V. Lissianski, GRI-Mech–An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion, Report No. GRI-95/0058, November 1, 1995.
13.
Shu
Z.
,
Choi
C.
,
Aggarwal
S. K.
,
Katta
V.
, and
Puri
I. K.
, “
Gravity effects on steady two-dimensional partially premixed methane-air flames
,”
Combust. Flame
118
,
91
91
(
1999
).
14.
Qin
X.
,
Puri
I. K.
, and
Aggarwal
S. K.
,
Katta
V. R.
, “
Gravity, radiation, and coflow effects on partially premixed flames
,”
Phys. Fluids
16
,
2963
2963
(
2004
).
15.
Xue
H.
,
Aggarwal
S. K.
, “
Effects of reaction mechanisms on structure and extinction of partially premixed flames
,”
AIAA J.
39
,
637
637
(
2001
).
16.
Katta
V. R.
,
Goss
L. P.
,
Roquemore
W. M.
, “
Numerical investigation of transitional H2/N2 jet diffusion flames
,”
AIAA J.
32
,
84
84
(
1994
).
17.
Lock
A. J.
,
Ganguly
R.
,
Puri
I. K.
,
Aggarwal
S. K.
,
Hedge
U.
, “
Gravity effects on partially premixed flames: an experimental-numerical investigation
,”
Proc. Combust. Inst.
30
,
511
511
(
2004
).
18.
A. J. Lock, A. M. Briones, X. Qin, S. K. Aggarwal, I. K. Puri and U. Hegde, “Liftoff characteristics of partially premixed flames under normal and microgravity conditions,” 143 (2005) 159.
19.
A. M. Briones, S. K. Aggarwal, and V. R. Katta, “A Numerical Investigation of Flame Liftoff, Stabilization, and Blowout,” Phys. Fluids 18 (2006).
20.
Yamashita
H.
,
Shimada
M.
, and
Takeno
T.
, “
A numerical study on flame stability at the transition point of jet diffusion flames
,”
Proc. Combust. Inst.
26
,
27
27
(
1996
).
21.
Won
S. H.
,
Chung
S. H.
,
Cha
M. S.
and
Lee
B. J.
, “
Lifted flame stabilization in developing and developed regions of coflow jets for highly diluted propane
,”
Proc. Combust. Inst.
28
,
2093
2093
(
2000
).
22.
Ko
Y. S.
and
Chung
S. H.
, “
Propagation of Unsteady Tribrachial Flames in Laminar Non-Premixed Jets
,”
Comb. Flame
118
(
1999
)
151
151
.
23.
X. Qin, An Investigation of Unsteady Partially Premixed Flames, The University of Illinois at Chicago, Ph. D. Thesis, 2003.
24.
Ruetsch
G. R.
,
Vervisch
L.
,
Linan
A.
, “
Effects of heat release on triple flames
,”
Phys. Fluids
(
1995
)
7
1447
1447
.
This content is only available via PDF.
You do not currently have access to this content.