A hybrid computational model combining classical molecular dynamics method for simulation of fast nonequilibrium phase transformations with a continuum description of the laser excitation and subsequent relaxation of the conduction band electrons is developed. The model is applied for a systematic computational investigation of the mechanisms of short pulse laser interaction with bulk metal targets. The material response to laser irradiation is investigated in three regimes corresponding to the melting and resolidification of the surface region of the target, photomechanical spallation of a single or multiple layers/droplets, and ablation driven by the thermodynamic driving forces. The conditions leading to the transitions between the different regimes and the atomic-level characteristics of the involved processes are established.

1.
Herrmann
R. F. W.
,
Gerlach
J.
,
Campbell
E. E. B.
,
Ultrashort pulse laser ablation of silicon: an MD simulation study
,
Appl. Phys. A
66
,
35
42
(
1998
).
2.
Zhigilei
L. V.
,
Leveugle
E.
,
Garrison
B. J.
,
Yingling
Y. G.
, and
Zeifman
M. I.
,
Computer simulations of laser ablation of molecular substrates
,
Chem. Rev.
103
,
321
348
(
2003
).
3.
Cheng
C. R.
and
Xu
X. F.
,
Mechanisms of decomposition of metal during femtosecond laser ablation
,
Phys. Rev. B
72
,
165415
165415
(
2005
).
4.
Wang
X. W.
,
Large-scale molecular dynamics simulation of surface nanostructuring with a laser-assisted scanning tunnelling microscope
,
J. Phys. D: Appl. Phys.
38
,
1805
1823
(
2005
).
5.
Okamoto
T.
,
Ohmura
E.
,
Sano
T.
,
Morishige
Y.
, and
Miyamoto
I.
,
Analytical study on metal microstructures using femtosecond laser
,
Appl. Phys.
A
81
,
639
643
(
2005
).
6.
Upadhyay
A. K.
and
Urbassek
H. M.
,
Melting and fragmentation of ultra-thin metal films due to ultrafast laser irradiation: a molecular-dynamics study
,
J. Phys. D: Appl. Phys.
38
,
2933
2941
(
2005
).
7.
Lorazo
P.
,
Lewis
L. J.
, and
Meunier
M.
,
Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation
,
Phys. Rev. B
73
,
134108
134108
(
2006
).
8.
Ivanov
D. S.
and
Zhigilei
L. V.
,
Combined atomisticcontinuum modeling of short pulse laser melting and disintegration of metal films
,
Phys. Rev. B
,
68
,
064114
064114
(
2003
).
9.
Ivanov
D. S.
and
Zhigilei
L. V.
,
The effect of pressure relaxation on the mechanisms of short pulse laser melting
,
Phys. Rev. Lett
.
91
,
105701
105701
(
2003
).
10.
Ivanov
D. S.
and
Zhigilei
L. V.
,
Combined atomistic - continuum model for simulation of laser interaction with metals: application to calculation of melting thresholds in Ni targets of varying thickness
,
Appl. Phys. A
79
,
977
981
(
2004
).
11.
Lin
Z.
and
Zhigilei
L. V.
,
Time-resolved diffraction profiles and atomic dynamics in short pulse laser induced structural transformations: Molecular dynamics study
,
Phys. Rev. B
73
,
184113
184113
(
2006
).
12.
Scha¨fer
C.
,
Urbassek
H. M.
, and
Zhigilei
L. V.
,
Metal ablation by picosecond laser pulses: A hybrid simulation
,
Phys. Rev. B
66
,
115404
115404
(
2002
).
13.
Leveugle
E.
,
Ivanov
D. S.
, and
Zhigilei
L. V.
,
Photomechanical spallation of molecular and metal targets: molecular dynamics study
,
Appl. Phys. A
79
,
1643
1655
(
2004
).
14.
Ivanov
D. S.
,
Zhigilei
L. V.
,
Bringa
E. M.
,
De Koning
M.
,
Remington
B. A.
,
Caturla
M. J.
, and
Pollaine
S. M.
,
Molecular dynamics simulations of shocks including electronic heat conduction and electron-phonon coupling
,
Shock Compression of Condensed Matter - 2003, AIP Conference Proceedings
706
,
225
228
(
2004
).
15.
Zhigilei
L. V.
and
Ivanov
D. S.
,
Channels of energy redistribution in short-pulse laser interactions with metal targets
,
Appl. Surf. Sci.
248
,
433
439
(
2005
).
16.
Zhigilei
L. V.
and
Garrison
B. J.
:
Mat. Res. Soc. Symp. Proc
.
538
,
491
491
(
1999
).
17.
Zhigilei
L. V.
and
Garrison
B. J.
,
Pressure waves in microscopic simulations of laser ablation
,
Mat. Res. Soc. Symp. Proc.
538
,
491
496
(
1999
).
18.
Zhou
X. W.
,
Wadley
H. N. G.
,
Johnson
R. A.
,
Larson
D. J.
,
Tabat
N.
,
Cerezo
A.
,
Petford-Long
A. K.
,
Smith
G. D. W.
,
Clifton
P. H.
,
Martens
R. L.
, and
Kelly
T. F.
,
Atomic scale structure of sputtered metal multilayers
,
Acta Mater.
49
,
4005
4015
(
2001
).
19.
Zhigilei
L. V.
,
Ivanov
D. S.
,
Leveugle
E.
,
Sadigh
B.
, and
Bringa
E. M.
,
Computer modeling of laser melting and spallation of metal targets
, High-Power Laser Ablation V, edited by C. R. Phipps,
Proc. SPIE
5448
,
505
519
(
2004
).
20.
Chen
P.
,
Tomov
I. V.
, and
Rentzepis
P. M.
,
Laser-induced transient structure and stress in a platinum (111)crystal studied by time-resolved X-ray diffraction
,
J. Appl. Cryst.
32
,
82
88
, (
1999
).
21.
Sokolowski-Tinten
K.
,
Bialkowski
J.
,
Boing
M.
,
Cavalleri
A.
, and
von der Linde
D.
,
Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation
,
Phys. Rev. B
58
,
R11805–R11808
R11805–R11808
(
1998
).
22.
Zhigilei
L. V.
and
Garrison
B. J.
,
Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes
,
J. Appl. Phys.
88
,
1281
1298
(
2000
).
23.
Zhidkov
A. G.
,
Zhigilei
L. V.
,
Sasaki
A.
, and
Tajima
T.
,
Short-laser-pulse driven emission of energetic ions into a solid target from a surface layer spalled by a laser prepulse
,
Appl. Phys. A
73
,
741
747
(
2001
).
24.
Martynyuk
M. M.
,
Mechanism for metal damage by intense electromagnetic radiation
,
Sov. Phys. Tech. Phys.
21
,
430
433
(
1976
).
25.
Sunner
J.
,
Ikonomou
M. G.
,
Kebarle
P.
,
SIMS spectra of alcohols and the phase explosion model of desorption ionization
,
Int. J. Mass Spectrom
.
82
,
221
237
(
1988
).
26.
Miotello
A.
and
Kelly
R.
,
Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature
,
Appl. Phys. A
69
,
S67–S73
S67–S73
(
1999
)
27.
Bulgakova
N. M.
and
Bourakov
I. M.
,
Phase explosion under ultrashort pulsed laser ablation: modeling with analysis of metastable state of melt
,
Appl. Surf. Sci.
197
,
41
44
(
2002
).
28.
Zhigilei
L. V.
,
Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation
,
Appl. Phys. A
76
,
339
350
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.