A chemical vapor deposition/infiltration reactor used to manufacture carbon aircraft brakes has been simulated numerically. This simulation accounts for a homogeneous gas reaction mechanism as well as a heterogeneous surface reaction mechanism. Non-Boussinesq equations are used to predict fluid flow, heat transfer, and species concentrations inside the reactor and porous brakes. A time-splitting algorithm is used to overcome stiffness associated with the reactions. A commercial code is used to solve for the convection/diffusion step while an implicit time-integration algorithm is used to solve for the reaction step. Results showing the flow, temperature and concentration fields, as well as the deposition rate of carbon, are presented.
Volume Subject Area:
Heat Transfer
1.
Becker
A.
Hu
Z.
Hu¨ttinger
K. J.
1999
. “Chemistry and kinetics of chemical vapour deposition of pyrolitic carbon from methane
”. J. Physics. IV
, 9
, pp. 8
–41
.2.
Warnatz, J., Maas, U., and Dibble, R. W., 2001. Combustion: Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation, 3rd ed. Springer, Berlin.
3.
Powers
J. M.
Paolucci
S.
2005
. “Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry
”. AIAA J.
, 43
(5)
, May, pp. 1088
–1099
.4.
Strang
G.
1968
. “On the construction and comparison of difference schemes
”. SIAM J. Numer. Anal.
, 5
, pp. 506
–517
.5.
Carrayrou
J.
Mose
R.
Behra
P.
2004
. “Operator-splitting procedures for reactive transport and comparison of mass balance errors
”. Journal of Contaminant Hydrology
, 68
, pp. 239
–368
.6.
Rouhi
A.
Wright
J.
1995
. “Spectral implementation of a new operator splitting method for solving partial differential equations
”. Computers in Physics
, 9
, pp. 554
–563
.7.
Rouhi
A.
Wright
J.
1995
. “A new operator splitting method for numerical solution of partial differential equations
”. Computer Physics Communications
, 85
, pp. 18
–28
.8.
Sportisse
B.
2000
. “An analysis of operator splitting techniques in the stiff case
”. J. Comput. Phys.
, 161
, pp. 140
–168
.9.
Chorin
A. J.
1967
. “A numerical method for solving incompressible viscous flow problems
”. J. Comput. Phys.
, 2
, pp. 12
–26
.10.
Najm
H. N.
Wyckoff
P. S.
Knio
O. M.
1998
. “A semi-implicit numerical scheme for reactive flow, I. stiff chemistry
”. J. Comput. Phys.
, 143
, pp. 381
–402
.11.
Knio
O. M.
Najm
H. N.
Wyckoff
P. S.
1999
. “A semi-implicit numerical scheme for reactive flow, II. stiff operator-split formulation
”. J. Comput. Phys.
, 154
, pp. 428
–467
.12.
Kamel, J. K., and Paolucci, S., 2004. “Heat transfer and fluid flow in a furnace using the non-Boussinesq approximation”. Proceedings of 2004 ASME Heat Transfer/Fluid Engineering Summer Conference, Charlotte, NC, USA, July 13-16.
13.
Kamel, J. K., and Paolucci, S., 2005. “Effect of Heat Transfer and Fluid Flow in a CVD Reactor on the Densification Rate of Carbon Brakes”. Proceedings of 2005 ASME Heat Transfer/Fluid Engineering Summer Conference, San Francisco, CA, USA, pp. July 17-22.
14.
Siegal, R., and Howell, J. R., 1992. Thermal Radiation Heat Transfer, 3rd ed. Hemisphere.
15.
Birakayala
N.
Evans
E. A.
2002
. “A reduced reaction model for carbon CVD/CVI processes
”. Carbon
, 40
, pp. 675
–683
.16.
Birakayala, N., 1999. “A Model for Carbon CVD/CVI: Study of the Effect of Kinetics on Pore Evolution”. MS Thesis, University of Akron, Akron, OH, December.
17.
Paolucci, S., 1982. On the filtering of sound from Navier-Stokes equations. Tech. Report SAND82-8257, Sandia National Laboratories, Livermore, CA, December.
18.
Kee, R. J., Dixon-Lewis, G., Warnatz, J., and Miller, J. A., 1988. A Fortran Computer Code Package for Evaluation of Gas Phase Multicomponent Transport Properties. Tech. Report SAND86-8246, Sandia National Laboratories, Livermore, CA, Nov.
19.
Kee, R. J., Rupley, F. M., and Miller, J. A., 1991. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics. Tech. Report SAND89-8009B, Sandia National Laboratories, Livermore, CA, Nov.
20.
Kee, R. J., Rupley, F. M., and Miller, J. A., 1990. The Chemkin Thermodynamic Data Base. Tech. Report SAND87-8215B, Sandia National Laboratories, Livermore, CA, March.
21.
Nield, D. A., and Bejan, A., 1999. Convection in Porous Media, 2nd ed. Springer.
22.
McAllister
P.
Wolf
E. E.
1993
. “Simulation of multiple substrate reactor for chemical vapor infiltration of pyrolytic carbon within carbon-carbon composites
”. AIChE Journal
, 39
, pp. 1196
–1209
.23.
Gas Research Institute Database, version 2.11. http://diesel.me.berkeley.edu/.
24.
Becker
A.
Hu¨ttinger
K. J.
1998
. “Chemistry and kinetics of pyrocarbon: II. pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the flow temperature regime
”. Carbon
, 36
(3)
, pp. 177
–199
.25.
Bammidipati
S.
Stewart
G. D.
Elliott
J. R.
Gokoglu
S. A.
Purdy
M. J.
1996
. “Chemical vapor deposition of carbon on graphite by methane pyrolysis
”. AIChE J.
, 42
, pp. 3123
–3132
.26.
The united states national institute of standards and technology. Standard Reference Database 17, http://www.nist.gov/. Version 7.0 (web version), Release 1.3.
27.
Ditkowski
A.
Gottlieb
D.
Sheldon
B. W.
2000
. “Optimization of chemical vapor infiltration with simulations powder formation
”. J. Mater. Res.
, 15
, pp. 2695
–2705
.28.
Coltrin
M. E.
Kee
R. J.
Rupley
F. M.
1991
. “Surface Chemkin: A general formalism and software for analyzing heterogeneous chemical kinetics at a gas-surface interface
”. Int. J. Chem. Kinetics
, 23
, pp. 1111
–1128
.29.
Coltrin
M. E.
Dandy
D. S.
1993
. “Analysis of diamond in sub-atmospheric DC plasma-gun reactors
”. J. Appl. Phys.
, 74
, pp. 5803
–5820
.30.
UMFPACK, version 4.2. http://www.cise.ufl.edu/research/sparse/umfpack/.
31.
Hindmarsh, A. C., 1983. “Odepack, a systematized collection of ode solvers”. Scientific Computing ed R S Stepleman et al (Amsterdam: North-Holland), pp. 55–64.
This content is only available via PDF.
Copyright © 2006
by ASME
You do not currently have access to this content.