Thermal spray coatings are used extensively for protection of engineering components and structures in a variety of applications. Due to the nature of thermal spraying process, the coating thermal, mechanical, and electrical properties depend strongly on the coating microstructure, which consists of many individual splats, interfaces between the splats, defects and voids. The coating microstructure, in turn, is determined by the thermal spray process parameters. In order to relate coating process parameters to the final coating performance, then, it is desirable to relate coating microstructure to coating properties. In this work, thermal conductivity is used as the physical parameter of interest. Thermal conductivity of thermal spray coatings is studied by using an image analysis-based approach of typical coating cross sections. Three coating systems, yttria stabilized zirconia (YSZ), molybdenum, and Ni-5wt.%Al are explored in this work. For each material, thermal conductivity is simulated by using a microstructure image-based finite element analysis model. The model is then applied to high temperature conditions (up to 1200 °C) with a hot stage-equipped scanning electron microscope imaging technique to assess thermal conductivity at high temperatures. The coating thermal conductivity of metallic coatings is also experimentally measured by using a high-temperature laser flash technique.

1.
Brindley
WJ.
,
1997
,
Properties of plasma-sprayed bond coats
.
Journal of Thermal Spray Technology
,
6
:
85
85
.
2.
Fauchais
P
,
Vardelle
A
,
Dussoubs
B.
,
2001
,
Quo vadis thermal spraying?
Journal of Thermal Spray Technology
,
10
:
44
44
.
3.
Herman
H
,
Sampath
S
,
McCune
R.
,
2000
,
Thermal spray: Current status and future trends
.
Mrs Bulletin
,
25
:
17
17
.
4.
Berndt
CC
,
Goland
AN
,
Herman
H
,
Houck
DL
,
Jones
K
,
Miller
RA
,
Wiser
R
,
Riggs
W
,
Sampath
S
,
Smith
M
,
Spanne
R.
,
1992
,
Current Problems in Plasma Spray Processing
.
Journal of Thermal Spray Technology
,
1
:
341
341
.
5.
McPherson
R.
,
1984
,
A Model for the Thermal-Conductivity of Plasma-Sprayed Ceramic Coatings
.
Thin Solid Films
,
112
:
89
89
.
6.
Klemens
PG
,
Gell
M.
,
1998
,
Thermal conductivity of thermal barrier coatings
.
Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing
,
245
:
143
143
.
7.
Cahill
DG
,
Ford
WK
,
Goodson
KE
,
Mahan
GD
,
Majumdar
A
,
Maris
HJ
,
Merlin
R
,
Phillpot
SR.
,
2003
,
Nanoscale thermal transport
.
Journal of Applied Physics
,
93
:
793
793
.
8.
Raghavan
S
,
Wang
H
,
Dinwiddie
RB
,
Porter
W. D.
,
Mayo
M. J.
,
1998
,
The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia
.
Scripta Materialia
,
39
:
1119
1119
.
9.
Poulain M, Dorvaux JM, Lavigne O, Me´vrel, R., Renollet, Y., Rio, C., 2002, Computation of thermal conductivity of porous materials applications to plasma sprayed TBCs. Turbomat 2002 International Symposium on Advanced Thermal Barrier Coatings and Titanium Aluminides for Gas Turbines 2002; June, 17–19, Germany.
10.
Tan Y, Longtin JP, Sampath S. Modeling Thermal Conductivity of Thermal Sprayed Coatings: Comparing Predictions to Experiments. Journal of Thermal Spray Technology, In press.
11.
Wang
Z
,
Kulkarni
A
,
Deshpande
S
,
Nakamura
T.
,
Herman
H.
,
2003
,
Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings
.
Acta Materialia
,
51
:
5319
5319
.
12.
Deshpande
S
,
Kulkarni
A
,
Sampath
S
,
Herman
H.
,
2004
,
Application of image analysis for characterization of porosity in thermal spray coatings and correlation with small angle neutron scattering
.
Surface & Coatings Technology
,
187
:
6
6
.
13.
Kulkarni
A
,
Wang
Z
,
Nakamura
T
,
Sampath
S.
,
Goland
A.
,
Herman
H.
,
Allen
J.
,
Ilavsky
J.
,
Long
G.
,
Frahm
J.
,
Steinbrech
R. W.
,
2003
,
Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings
.
Acta Materialia
,
51
:
2457
2457
.
14.
Lavigne O, Renollet Y, Poulain M, Rio, C., Moretto, P., Bra¨nnvall, P., Wigren, J., 1999, Microstructural characterisation of plasma sprayed thermal barrier coatings by quantitative image analysis. Quantitative microscopy of high temperature materials conference—Sheffield, UK.
15.
Wayne
SF
,
Sampath
S
,
Anand
V.
,
1994
,
Wear Mechanisms in Thermally-Sprayed Mo-Based Coatings
.
Tribology Transactions
,
37
:
636
636
.
16.
Montavon
G
,
Coddet
C
,
Berndt
CC
,
Leigh
SH.
,
1998
,
Microstructural index to quantify thermal spray deposit microstructures using image analysis
.
Journal of Thermal Spray Technology
,
7
:
229
229
.
17.
http://rsb.info.nih.gov/nih-image/ NIH Image version 1.62. It was developed at the Research Services Branch (RSB) of the National Institute of Mental Health (NIMH), part of the National Institutes of Health (NIH). NIMH, 6001 Executive Boulevard, Rm. 8184, MSC 9663, Bethesda, MD 20892-9663, USA.
18.
Antou
G
,
Montavon
G
,
Hlawka
F
,
Bolot
R
,
Cornet
A
,
Coddet
C
,
Machi
F.
,
2005
,
Thermal and mechanical properties of partially stabilized zirconia coatings manufactured by hybrid plasma spray process
.
High Temperature Material Processes
,
9
:
109
109
.
19.
Deshpande
S
,
Sampath
S
,
Zhang
H.
,
2006
.
Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings - Case study for Ni-Al
.
Surface & Coatings Technology
,
200
:
5395
5395
.
20.
Pawlowski
L
,
Fauchais
P.
,
1992
,
Thermal Transport-Properties of Thermally Sprayed Coatings
.
International Materials Reviews
,
37
:
271
271
.
21.
Frankel
RS
,
Aitken
DW.
,
1970
,
Energy-Dispersive X-Ray Emission Spectroscopy
.
Applied Spectroscopy
,
24
:
557
557
.
22.
ASTM. E 1461-01 Standard Test Method for Thermal Diffusivity of Solids by the Flash Method, ASTM International.
23.
Dutton
R
,
Wheeler
R
,
Ravichandran
KS
,
An
K.
,
2000
,
Effect of heat treatment on the thermal conductivity of plasma-sprayed thermal barrier coatings
.
Journal of Thermal Spray Technology
,
9
:
204
204
.
24.
Wang
H
,
Dinwiddie
RB.
,
2000
,
Reliability of laser flash thermal diffusivity measurements of the thermal barrier coatings
.
Journal of Thermal Spray Technology
,
9
:
210
210
.
25.
Jang
BK
,
Yoshiya
M
,
Matsubara
H.
,
2005
,
Influence of number of layers on thermal properties of nano-structured zirconia film fabricated by EB-PVD method
.
Journal of the Japan Institute of Metals
,
69
:
56
56
.
26.
Singh
H
,
Gokhale
AM.
,
2005
,
Visualization of three-dimensional microstructures
.
Materials Characterization
,
54
:
21
21
.
27.
Sampath
S
,
Jiang
XY
,
Matejicek
J
,
Prchlik
L.
,
Kulkarni
A.
,
Vaidya
A.
,
2004
,
Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni-5 wt.%Al bond coats
.
Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing
,
364
:
216
216
.
28.
Terada
Y
,
Ohkubo
K
,
Mohri
T
,
Suzuki
T.
,
1997
,
Thermal conductivity in nickel solid solutions
.
Journal of Applied Physics
,
81
:
2263
2263
.
29.
Terada
Y
,
Ohkubo
K
,
Nakagawa
K
,
Mohri
T
,
Suzuki
T.
,
1995
Thermal-Conductivity of B2-Type Aluminides and Titanides
.
Intermetallics
,
3
:
347
347
.
30.
Aggarwal
MC
,
Springer
GS.
,
1979
,
High Temperature-High Pressure Thermal-Conductivity of Argon
.
Journal of Chemical Physics
,
70
:
3939
3939
.
31.
NIST. http://webbook.nist.gov/chemistry/fluid/.
32.
Ahmaniemi
S
,
Vuoristo
P
,
Mantyla
T
,
Cernuschi
F
,
Lorenzoni
L.
,
2004
,
Modified thick thermal barrier coatings: Thermophysical characterization
.
Journal of the European Ceramic Society
,
24
:
2669
2669
.
33.
Schlichting
KW
,
Padture
NP
,
Klemens
PG.
,
2001
,
Thermal conductivity of dense and porous yttria-stabilized zirconia
.
Journal of Materials Science
,
36
:
3003
3003
.
This content is only available via PDF.
You do not currently have access to this content.