It remains a big challenge to theoretically predict the material removals mechanism in femtosecond laser ablation. To bypass this unresolved problem, many calculations of femtosecond laser ablation of non-metals have been based on free electron density distribution without the actual consideration of the phase change mechanism. However, this widely-used key assumption needs further theoretical and experimental confirmations. By combining the plasma model and improved two-temperature model developed by the authors, this study focuses on investigating ablation threshold fluence, depth, and shape during femtosecond laser ablation of dielectrics through non-thermal processes (the Coulomb explosion and electrostatic ablation). The predicted ablation depths and shapes in fused silica, by using 1) the plasma model only and 2) the plasma model plus the two-temperature equation, are both in agreement with published experimental data. The widely-used assumptions for threshold fluence, ablation depth, and shape in the plasma model based on free electron density are validated by the comparison study and experimental data.

1.
Jiang
L.
, and
Tsai
H. L.
,
2005
, “
Repeatable Nanostructures in Dielectrics By Femtosecond Laser Pulse Trains
,”
Appl. Phys. Lett.
,
87
(
15)
, pp.
151104
151106
.
2.
Lenzner
M.
,
Kru¨ger
J.
,
Sartania
S.
,
Cheng
Z.
,
Spielmann
C.
,
Mourou
G.
,
Kautek
W.
, and
Krausz
F.
,
1998
, “
Femtosecond Optical Breakdown in Dielectrics
,”
Phys. Rev. Lett.
,
80
, pp.
4076
4079
.
3.
Jiang
L.
, and
Tsai
H. L.
,
2005
, “
Improvements on Two-Temperature Models and Its Applications in Ultrashort Laser Damage of Metal Films
,”
ASME J. Heat Transfer
,
127
(
10)
, pp.
1167
1173
.
4.
Rethfeld
B.
,
Kaiser
A.
,
Vicanek
M.
, and
Simon
G.
,
2002
, “
Ultrafast Dynamics of Nonequilibrium Electrons in Metals under Femtosecond Laser Irradiation
,”
Phys. Rev. B
,
65
, pp.
214303
214313
.
5.
Qiu
T. Q.
, and
Tien
C. L.
,
1994
, “
Femtosecond Laser Heating of Multi-Layer Metals-I Analysis
,”
Int. J. Heat Mass Transfer
,
37
, pp.
2789
2797
.
6.
Ladieu
F.
,
Martin
P.
, and
Guizard
S.
,
2002
, “
Measuring Thermal Effects in Femtosecond Laser-Induced Breakdown of Dielectrics
”,
Appl. Phys. Lett.
,
81
, pp.
957
959
.
7.
Elsayed-Ali
H. E.
,
Norris
T. B.
,
Pessot
M. A.
, and
Mourou
G. A.
,
1987
, “
Time-Resolved Observation of Electron-Phonon Relaxation in Copper
,”
Phys. Rev. Lett.
,
58
, pp.
1212
1215
8.
Hertel
T.
,
Knoesel
E.
,
Wolf
M.
, and
Ertl
G.
,
1996
, “
Ultrafast Electron Dynamics at Cu(111): Response of an Electron Gas to Optical Excitation
,”
Phys. Rev. Lett.
,
76
, pp.
535
538
.
9.
Brorson
S. D.
,
Kazeroonian
A.
,
Moodera
J. S.
,
Face
D. W.
,
Cheng
T. K.
,
Ippen
E. P.
,
Dresselhaus
M. S.
, and
Dresselhaus
G.
,
1990
, “
Femtosecond Room-Temperature Measurement of the Electron-Phonon Coupling Constant Gamma in Metallic Superconductors
,”
Phys. Rev. Lett.
,
64
, pp.
2172
2175
.
10.
Jiang, L., and Tsai, H. L., 2003, “Femtosecond Laser Ablation: Challenges and Opportunities,” Proceeding of NSF Workshop on Research Needs in Thermal Aspects of Material Removal, Stillwater, OK, pp. 163–177.
11.
Stoian
R.
,
Ashkenasi
D.
,
Rosenfeld
A.
, and
Campbell
E. E. B.
,
2000
, “
Coulomb Explosion in Ultrashort Pulsed Laser Ablation of Al2O3
,”
Phys. Rev. B
,
62
, pp.
13167
13173
.
12.
Stuart
B. C.
,
Feit
M. D.
,
Herman
S.
,
Rubenchik
A. M.
,
Shore
B. W.
, and
Perry
M. D.
,
1996
, “
Nanosecond-to-Femtosecond Laser-Induced Breakdown in Dielectrics
,”
Phys. Rev. B
,
53
, pp.
1749
1761
.
13.
Stuart
B. C.
,
Feit
M. D.
,
Rubenchik
A. M.
,
Shore
B. W.
, and
Perry
M. D.
,
1995
, “
Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses
,”
Phys. Rev. Lett.
,
74
, pp.
2248
2251
.
14.
Perry
M. D.
,
Stuart
B. C.
,
Banks
P. S.
,
Feit
M. D.
,
Yanovsky
V.
, and
Rubenchik
A. M.
,
1999
, “
Ultrashort-Pulse Laser Machining of Dielectric Materials
,”
J. Appl. Phys.
,
85
, pp.
6803
6810
.
15.
Jiang
L.
, and
Tsai
H. L.
,
2004
, “
Prediction of Crater Shape in Femtosecond Laser Ablation of Dielectrics
,”
J. Phys. D
,
37
, pp.
1492
1496
.
16.
Jiang
L.
, and
Tsai
H. L.
,
2005
, “
Energy Transport and Material Removal during Femtosecond Laser Ablation of Wide Bandgap Materials
,”
Int. J. Heat Mass Transfer
,
48
(
3–4)
, pp.
487
499
.
17.
Gamaly
E. G.
,
Rode
A. V.
,
Luther-Davies
B.
, and
Tikhonchuk
V. T.
,
2002
, “
Ablation of Solids by Femtosecond Lasers: Ablation Mechanism and Ablation Thresholds for Metals and Dielectrics
,”
Phys. of Plas.
,
9
, pp.
949
957
.
18.
Xu
X.
,
Chen
G.
, and
Song
K. H.
,
1999
, “
Experimental and Numerical Investigation of Heat Transfer and Phase Change Phenomena during Excimer Laser Interaction with Nickel
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1371
1382
.
19.
Li
M.
,
Menon
S.
,
Nibarger
J. P.
, and
Gibson
G. N.
,
1999
, “
Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics
,”
Phys. Rev. Lett.
,
82
, pp.
2394
2397
.
20.
Fox, M., 2001, Optical Properties of Solids, Oxford University Press, Oxford.
21.
Lee
Y. T.
, and
More
R. M.
,
1984
, “
An Electron Conductivity Model for Dense Plasma
,”
Phys. Fluids
,
27
(
5)
, pp.
1273
1286
.
22.
Eidmann
K.
,
Meyer-ter-Vehn
J.
,
Schlegel
T.
, and
Hu¨ller
S.
,
2000
, “
Hydrodynamic Simulation of Subpicosecond Laser Interaction with Solid-Density Matter
,”
Phys. Rev. E
,
62
, pp.
1202
1214
.
23.
Ashcroft, N. W., and Mermin, N. D., 1976, Solid State Physics, Holt, Rinehart, and Winston, New York.
24.
Qiu
T. Q.
, and
Tien
C. L.
,
1992
, “
Short-Pulse Laser Heating on Metals
,”
Int. J. Heat Mass Transfer
,
35
, pp.
719
726
.
25.
Doremus, R. H., 1994, Glass Science, John Wiley and Sons, New York.
26.
Rousse
A.
,
Rischel
C.
,
Fourmaux
S.
,
Uschmann
I.
,
Sebban
S.
,
Grillon
G.
,
Balcou
P.
,
Fo¨rster
E.
,
Geindre
J. P.
,
Audebert
P.
,
Gauthier
J. C.
, and
Hulin
D.
,
2001
, “
Non-Thermal Melting in Semiconductors Measured at Femtosecond Resolution
,”,
Nature
410
, pp.
65
68
.
27.
Dumitru
G.
,
Romano
V.
,
Weber
H. P.
,
Sentis
M.
, and
Marine
W.
,
2001
, “
Femtosecond Ablation of Ultrahard Materials
,”
Appl. Phys. A
,
74
,
6
, pp.
729
739
.
28.
Wu
Z.
,
Jiang
H.
,
Zhang
Z.
,
Sun
Q.
,
Yang
H.
, and
Gong
Q.
,
2002
, “
Morphological Investigation at the Front and Rear Surfaces of Fused Silica Processed with Femtosecond Laser Pulses in Air
,”
Opt. Express
,
10
, pp.
1244
1249
.
29.
Bonse
J.
,
Munz
M.
, and
Sturm
H.
,
2004
, “
Scanning Force Microscopic Investigations of the Femtosecond Laser Pulse Irradiation of Indium Phosphide in Air
,”
IEEE Nanotechnology
,
3
, pp.
358
367
.
30.
Kru¨ger
J.
and
Kautek
W.
,
1999
, “
The Femtosecond Pulse Laser: a New Tool for Micromaching
,”
Laser Phys.
,
9
, pp.
30
40
.
31.
Nakamura, S., Hoshino, M., and Ito, Y., 2001, “Monitoring of CW YAG Laser Welding using Optical and Acoustic Signals,” Proceeding of ICALEO, Jacksonville, FL.
32.
Lapczyna
M.
,
Chen
K. P.
,
Herman
P. R.
,
Tan
H. W.
, and
Marjoribanks
R. S.
,
1999
, “
Ultra High Repetition Rate (133MHz) Laser Ablation of Aluminum with 1:2-ps Pulses
,”
Appl. Phys. A
69
[Suppl.], pp.
S883–S886
S883–S886
.
33.
Herman
P. R.
,
Oettl
A.
,
Chen
K. P.
, and
Marjoribanks
R. S.
,
1999
, “
Laser Micromachining of ’Transparent’ Fused Silica with 1-ps Pulses and Pulse Trains
,”
SPIE Proc.
3616
, pp.
148
155
.
34.
Jiang
L.
and
Tsai
H. L.
,
2006
, “
Plasma Modeling for Femtosecond Laser Ablation of Dielectrics
,”
J. Appl. Phys.
,
100
(
2)
, pp.
023116(1)–023116(7)
023116(1)–023116(7)
.
This content is only available via PDF.
You do not currently have access to this content.