A micromechanics model is developed to predict the effective thermo-mechanical properties of energetic materials, which are composite materials made from agglomeration of particles of a range of sizes. A random packing algorithm is implemented to construct a representative volume element for the heterogeneous material based on the experimentally determined particle diameter distribution. The effective mechanical properties of the material are then evaluated through finite element modeling, while its thermal properties are determined through a finite volume approach. The model is first carefully validated against results from the literature and is then used to estimate the thermo-mechanical properties of particular energetic materials. Good agreement is found between experimental results and predictions. The stress-bridging phenomenon in the particulate materials is captured by the model. Thermodynamic averaging is shown to be a poor representation for the estimation of thermal properties of these heterogeneous materials. Also, the general elastic-plastic assumption is found not to be applicable for describing the mechanical behavior of energetic composites.

1.
Cooper, P. W., 1996, Explosives Engineering, Wiley-VCH, New York.
2.
Teipel, U., Energetic Materials, Wiley-VCH, 2005.
3.
Sun, D., Annapragada, S. R., Garimella, S. V. and Singh, S. K., 2006, “Analysis of gap formation in the casting of energetic materials,” Numerical Heat Transfer (in press).
4.
Annapragada
S. R.
,
Sun
D.
, and
Garimella
S. V.
, “
Analysis and suppression of base separation in the casting of a cylindrical ingot
,”
Proceedings of 7th ASME-ISHMT Heat and Mass Transfer Conference, IIT Guwahati, India, Jan
4–6
pp.
2006
2006
5.
Sun, D., Annapragada, S. R., Garimella, S. V. and Singh, S. K., 2005, “Solidification heat transfer and base separation analysis in the casting of an energetic material in a projectile,” ASME IMECE2005–80432, Orlando, FL
6.
Bardenhagen
S. G.
and
Brackbill
J. U.
,
1998
, “
Dynamic stress bridging in granular material
,”
Journal of Applied Physics
,
83
(
11)
, pp.
5732
5740
.
7.
Bardenhagen
S. G.
,
Brackbill
J. U.
, and
Sulsky
D.
,
2000
, “
The material-point method for granular materials
,”
Computational Methods in Applied Mechanics and Engineering
,
176
, pp.
529
541
.
8.
Clements
B. E.
and
Mas
E. M.
,
2001
, “
Dynamic mechanical behavior of filled polymers. I. Theoretical development
,”
Journal of Applied Physics
,
90
, pp.
5522
5534
.
9.
Clements
B. E.
and
Mas
E. M.
,
2004
, “
A theory for plastic-bonded materials with a bimodal size distribution of filler particles
,”
Modelling and Simulation in Materials Science and Engineering
,
12
, pp.
407
421
.
10.
Banerjee
B.
,
Cady
C. M.
,
Adams
D. O.
,
2003
, “
Micromechanics simulations of glass-estane mock polymer bonded explosives
,”
Modelling and Simulations in Materials Science and Engineering
,
11
, pp.
457
475
.
11.
Banerjee
B.
and
Adams
D. O.
,
2003
, “
Micromechanicsbased determination of effective elastic properties of polymer bonded explosives
,”
Physica B
,
338
, pp.
8
15
.
12.
Tsotsas
E.
,
Martin
H.
,
1987
, “
Thermal conductivity of packed beds: A review
,”
Chemical Engineering Processing
,
22
(
1)
, pp.
19
37
.
13.
Kumar
S.
and
Murthy
J. Y.
,
2005
A numerical technique for computing effective thermal conductivity of fluid-particle mixtures
,”
Numerical Heat Transfer Part B-Fundamentals
47
(
6)
, pp.
555
572
.
14.
Calmidi
V. V.
and
Mahajan
R. L.
,
1999
, “
The effective thermal conductivity of high porosity fibrous metal forms
,”
Journal of Heat Transfer
,
121
(
2)
, pp.
466
471
.
15.
Boomsma
K.
and
Poulikakos
D.
,
2001
, “
On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam
,”
International Journal of Heat and Mass Transfer
,
44
, pp.
827
836
.
16.
Fedoroff, B. T., Sheffield, O. E., 1980, Encyclopedia of explosives related items, Dover, N. J., Picatinny Arsenal, R120–R133.
17.
Fedoroff, B. T., Sheffield, O. E., 1980, Encyclopedia of explosives related items, Dover, N. J., Picatinny Arsenal, T259–T283.
18.
Craig
R. G.
,
Eick
J. D.
, and
Peyton
F. A.
,
1967
, “
Strength properties of waxes at various temperatures and their practical application
,”
Journal of Dental Resources
,
46
(
1)
, pp.
300
305
.
19.
Lubachevsky
B. D.
and
Stillinger
F. H.
,
1990
, “
Geometric-properties of random disk packings
,”
Journal of Statistical Physics
,
60
(
5–6)
, pp.
561
583
.
20.
Knott
G. M.
,
Jackson
T. L.
and
Buckmaster
J.
,
2001
, “
Random packing of heterogeneous propellants
,”
AIAA Journal
,
39
(
4)
, pp.
678
686
.
21.
GAMBIT 2.2, User Manual, FLUENT, Inc., 2004.
22.
FLUENT 6.2, User Manual, FLUENT, Inc., 2005.
23.
Kanit
T.
,
Forest
S.
,
Galliet
I.
,
Mounoury
V.
,
Jeulin
D.
,
2003
, “
Determination of the size of the representative volume element for random composites: statistical and numerical approach
,”
International Journal of Solids and Structures
,
40
, pp.
3647
3679
24.
Sab
K.
,
1992
, “
On the homogenization and the simulation of random materials
,”
European Journal of Mechanics - A/Solids
,
11
, pp.
585
607
.
25.
Jun
S.
, and
Jasuik
I.
,
1993
Elastic moduli of two-dimensional composites with sliding inclusions - a comparison of effective medium theories
,
Intl. J. of Solids Struct.
,
30
pp.
2501
2523
.
26.
ANSYS 8.1 User Manual, ANSYS Inc., 2004.
27.
Fedoroff, B. T., Sheffield, O. E., 1980, Encyclopedia of Explosives related items, Dover, N. J., Picatinny Arsenal, C477-C484.
28.
Watt
J. P.
and
Peselnick
L
,
1980
, “
Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries
,”
Journal of Applied Physics
51
, pp.
1525
1530
.
29.
Krishnan
S.
,
Murthy
J. Y.
, and
Garimella
S. V.
,
2004
, “
A two-temperature model for solid-liquid phase change in metal foams
,”
Journal of Heat Transfer
,
127
, pp.
997
104
.
This content is only available via PDF.
You do not currently have access to this content.