Cloudiness, bubble core defects, anomalous absorption, low-angle grain boundaries, and cracking are the main problems in the growth of high quality and large diameter (>7cm) Yb:S-FAP crystals utilizing the Czochralski method. The generation mechanism of these defects is highly related to transport phenomena in the growth system. In this paper, firstly, inductive, conductive and radiative heat transport phenomena are examined in the entire growth system. Then, an integrated modeling and experimental study is presented to determine an efficient means to eliminate or reduce crystal cracking during cooling. A process model has been developed to simulate the crystal cooling process. The effect of temperature distribution on thermal stress in the crystal during cooling is predicted by a simple but effective computational algorithm. With the relationship between the power change and crystal surrounding temperature change, the process model is further used to optimize power ramp-down profile to avoid cracking of the crystal during cooling-down process.

1.
Schaffers
K. I.
,
Tassano
J. B.
,
Waide
P. A.
,
Payne
S. A.
,
Moris
R. C.
, “
Progress in the growth of Yb:S-FAP laser crystals
”,
J. Crystal Growth
,
225
(
2001
)
449
453
2.
L.D. Deloach, S.A. Payne, W.L. Kway, J.B. Tassano, S.N. Dixit, W.F. Krupke, J. Luminescence 62 (1994) 85
3.
A.J. Nelson, T. van Buuren, C. Bostedt, K.I. Schaffers, L.J. Terminello, M. Engelhard, D.Baer, J.Appl. Phys. 91(8) (2002) 5135
4.
L.D. DeLoach, S.A. Payne, L.L. Chase, L.K.Smith, W.L. Kway, W.F. Krupke, IEEE J. Quantum Electron.29 (1993) 1179
5.
B. Chalmers, Principles of Solidification, Wiley, New york, 1964, P. 150
6.
G.M. McManus, R.H. Hopkins, W.J. Takei, J. Appl. Phys. 40(1) (1969) 180
7.
A.S.Jordan, J. Crystal Growth 49(1980)631
8.
I. Yonenga, K.Sumino, J. Appl. Phys.71 (1992) 4249
9.
Metzger
Michael
,
Backofen
Rainer
,
J. Crystal Growth
220
(
2000
)
6
15
10.
Schaffers
K. J.
,
Tassano
J. B.
,
Bayramian
A. B.
,
Morris
R. C.
,
J. Crystal Growth
253
(
2003
)
297
306
11.
J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York (1998)
12.
Chen
Q.-S.
,
Zhang
H.
,
Prasad
V.
,
Balkas
C. M.
,
Yushin
N. K.
, “
Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals
”,
J. Heat Transfer
, Vol.
123
, p.
1098
1109
(
2001
)
13.
M.F. Modest, Radiative Heat Transfer, McGraw-Hill, New York (1993)
14.
Ma
R.-H.
,
Zhang
H.
,
Ha
S.
,
Skowronski
M.
, “
Integrated process modeling and experimental validation of silicon carbide sublimation growth
”,
Journal of Crystal Growth
, Vol.
252
, p.
523
537
(
2003
)
This content is only available via PDF.
You do not currently have access to this content.