The suppression of fires and flames is an important area of interest for both terrestrial and space based applications. In this investigation we elucidate the relative efficacy of fuel and air stream inert diluents for suppressing laminar partially premixed flames. A comparison of the effects of fuel and air stream dilution are also made with other fuels. Both counterflow and coflow flames are investigated, with both normal and zerogravity conditions considered for coflow flames. Simulations are conducted for both the counterflow and coflow flames, while experimental observations are made on the coflowing flames. With fuel or air stream dilution, coflow flames are observed to move downstream from the burner after overcoming initial heat transfer coupling. Further increases in diluent result in increases in the flame liftoff height until blow off occurs. The flame liftoff height and the critical volume fraction of extinguishing agent at blow out vary with both equivalence ratio and with the stream in which diluents are introduced. Nonpremixed methane-air flames are more difficult to extinguish than partially premixed flames with fuel stream dilution; whereas, partially premixed methane-air flames are more resistant to extinction than nonpremixed flames with air stream dilution. This difference in efficacy of the fuel and air stream dilution is attributed to the action of the diluent. In leaner partially premixed flames with fuel stream dilution and richer partially premixed flames with air stream dilution the effect of the diluent is to replace the deficient reactant in the system, thus starving the flame. In leaner partially premixed flames with air stream dilution and richer partially premixed flames with fuel stream dilution the effect of the diluent is purely thermal in that it absorbs heat from the flame, until combustion may no longer be sustained. The dilution effect is more effective than the thermal effect. When gravity is eliminated from the 2-D flame the liftoff height decreases and the critical volume fraction of diluent for blow off is also decreased.

1.
Peters
 
N.
,
Proc. Combust. Inst.
20
(
1984
)
353
360
.
2.
Seshadri
 
K.
,
Puri
 
I. K.
, and
Peters
 
N.
,
Combust. Flame
61
(
1985
)
237
249
.
3.
Tsuji
 
H.
,
Prog. Energ. Combust. Sci.
8
(
1982
)
93
119
.
4.
Hamins, A., Trees, D., Seshadri, K., Chelliah, H., Combust. Flame 99 (1994) 221.
5.
Bundy
 
M.
,
Hamins
 
A.
,
Lee
 
K. Y.
,
Combust. Flame
133
(
2003
)
299
310
.
6.
Trees
 
D.
,
Grudno
 
A.
,
Seshadri
 
K.
,
Combust. Sci. Technol.
124
(
1997
)
311
330
.
7.
Vahdat
 
N.
,
Zou
 
Y.
,
Collins
 
M.
,
Fire Safety J.
38
(
2003
)
553
567
.
8.
UNEP, Montreal Protocol on Substances that Deplete the Ozone Layer, 2004.
9.
Law
 
C. K.
,
Faeth
 
G. M.
,
Prog. Energy Combust. Sci.
20
(
1994
)
65
113
.
10.
Lock
 
A. J.
,
Ganguly
 
R.
,
Puri
 
I. K.
,
Aggarwal
 
S. K.
,
Hedge
 
U.
,
Proc. Combust. Inst.
30
(
2004
)
511
518
.
11.
Seiser
 
R.
,
Truett
 
L.
,
Seshadri
 
K.
,
Proc. Combust. Inst.
29
(
2002
)
1551
1557
.
12.
Masri
 
A. R.
,
Combust. Sci. Tech
, Vol.
96
,
1994
, pp.
189
212
13.
Trees
 
D.
,
Grudno
 
A.
,
Seshadri
 
K.
,
Combust. Sci. Tech.
Vol.
124
,
1997
, pp.
311
330
14.
Lock
 
A.
,
Briones
 
A. M.
,
Qin
 
X
,
Aggarwal
 
S. K.
,
Puri
 
I. K.
,
Hegde U
,
Combust Flame
143
(
2005
)
159
173
15.
Cho
 
Y. T.
,
Na
 
S-J.
,
Meas. Sci. Technol.
16
(
2005
)
878
884
16.
Shu, Z., Aggarwal, S. K., Katta, V. R., Puri, I. K., Combust. Flame 111 (1997) 276.
17.
Azzoni, R., Ratti, S., Puri, I. K., Aggarwal, S. K., Phys. Fluids 11 (1999) 3449.
18.
Siegel, R., Howell, J. R., Thermal Radiation Heat Transfer, Hemisphere Publishing Corporation, New York, 1981.
19.
Peters
 
N.
,
Reduced Kinetic Mechanisms for Applications in Combustion Systems
,
Lecture Notes in Physics
, Vol.
m15
, edited by N. Peters and B. Rogg, (Springer, Berlin,
1993
), pp.
3
14
.
20.
Katta, V.R., Takahashi, F., Linteris, G.T., Combust. Flame 137 (2004) 506.
21.
Kee, R. J., et. al, CHEMKIN Release 4.0.2, Reaction Design, San Diego, CA (2005).
22.
Frenklach, M., Bowman, C.T., Smith, G.P., Gardiner, W.C., World Wide Web location http://www.me.berkeley.edu.gri_mech/, Version 3.0, 1999.
23.
Li
 
S. C.
,
Williams
 
F. A.
, “
NOx formation in two-stage methane-air flames
”,
Combust. Flame
,
118
:
399
411
(
1999
)
24.
Katta, V.R., Meyer, T.R., Brown, M.S., Gord, J.R., Roquemore, W.M., Combust. Flame 137 (2004) 198.
25.
Shu, Z., Krass, B., Choi, C., Aggarwal, S. K., Katta, V., Puri, I. K., Proc. Combust. Inst. 27 (1998) 625.
26.
Bilger, R. W., Proc. Combust. Inst. 22 (1988) 475.
27.
Du
 
J.
,
Axelbaum
 
R. L
,
Proc. Combust. Inst.
26
1137
1142
(
1996
)
28.
Peters, N., Williams, F. A., AIAA J. 21 (1983) 423.
This content is only available via PDF.
You do not currently have access to this content.