In this study, we investigate some preliminary reaction model predictions analytically in comparison with experimental premixed turbulent combustion data from four different flame configurations, which include i) high-jet enveloped, ii) expanding spherical, iii) Bunsen-like, and iv) wide-angled diffuser flames. The special intent of the present work is to evaluate the workability range of the model to hydrogen and hydrogen-doped hydrocarbon mixtures, emphasizing on the significance of preferential diffusion, PD, and Le effects in premixed turbulent flames. This is carried out in two phases: first, involving pure hydrocarbon and pure hydrogen mixtures from two independent measured data, and second, with the blended mixtures from two other data sets. For this purpose, a novel reaction closure embedded with explicit high-pressure and exponential Lewis number terms developed in the context of hydrocarbon mixtures is used. These comparative studies based on the global quantity, turbulent flame speed, indicate that the model predictions are encouraging yielding proper quantification along with reasonable characterization of all the four different flames, over a broad range of turbulence, fuel-types and for varied equivalence ratios. However, with each flame involved the model demands tuning of the (empirical) constant to allow for either or both of these effects, or for the influence of the burner geometry. This provisional stand remains largely insufficient. Therefore, a submodel for chemical time scale from the leading point analysis based on the critically curved laminar flames employed in earlier studies for expanding spherical flames is introduced here. By combining the submodel and the reaction closure, the dependence of turbulent flame speed on physicochemical properties of the burning mixtures including the strong dependence of preferential diffusion and/or Le effects can be determined.

1.
Nakahara, M., Kido, H. (1998). A Study of the Premixed Turbulent Combustion Mechanism Taking the Preferential Diffusion Effect into Consideration. Memoirs of the Faculty of Engineering, Kyushu University, Vol. 58.
2.
Halter, F. (2005). Caracte´risation des effets de Pajout d’hydroge`ne et de la haute pression dans les flammes turbulentes de pre´me´lange me´thane/air. Dissertation. Energe´tique - Me´canique des fluides, l’Universite d’Orleans.
3.
Gauducheau
J. L.
,
Denet
B.
,
Searby
G.
(
1998
).
A Numerical Study of Lean CH4/H2/Air Premixed Flames at High Pressure
.
Combust. Sci. and Tech.
, Vol.
137
, pp.
81
99
.
4.
Sankaran, R., Im, H. G. (2006). Effects of Hydrogen Addition on the Flammability Limit of Stretched Methane-Air Premixed Flames. Combust. Sci. and Tech., Vol. in press.
5.
Muppala
S. P. R.
,
Aluri
N. K.
,
Dinkelacker
F.
,
Leipertz
A.
(
2005
).
Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene and propane/air flames for pressures up to 1.0 MPa
.
Combust. Flame
, Vol.
140
, pp.
257
266
.
6.
Aluri
N. K.
,
Muppala
S. P. R.
,
Dinkelacker
F.
, (
2006
).
Substantiating a Fractal-based Algebraic Reaction Closure of Premixed Turbulent Combustion for High-Pressure and the Lewis Number Effects
.
Combust. Flame
, Vol.
145
Iss.
4
pp.
663
674
.
7.
Soika
A.
,
Dinkelacker
F.
,
Leipertz
A.
(
2003
).
Pressure influence on the flame front curvature of turbulent premixed flames: comparison between experiment and theory
.
Combust. Flame
, Vol.
132
, pp.
451
462
.
8.
Trouve´
A.
,
Poinsot
T.
(
1994
).
The evolution equation for the flame surface density in turbulent premixed combustion
,
J. Fluid Mech.
, Vol.
278
, pp.
1
31
.
9.
Chen
Y.-C.
,
Bilger
R. W.
(
2002
).
Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion—I: hydrocarbon/air bunsen flames
.
Combust. Flame
, Vol.
131
, pp.
400
435
.
10.
Lipatnikov, A. (2006) Private Communication
11.
Lipatnikov
A. N.
,
Chomiak
J.
(
2005
).
Molecular transport effects on turbulent flame propagation and structure
.
Prog. Energy Combust. Sci.
, Vol.
31
, pp.
1
71
.
12.
Karpov
V. P.
,
Lipatnikov
A. N.
,
Zimont
V. L.
(
1996
).
A test of an engineering model of premixed turbulent combustion
.
Proc. Combust. Inst.
, Vol.
26
, pp.
249
257
.
13.
Halter
F.
,
Chauveau
C.
,
Djebaili-Chaumeix
N.
,
Go¨kalp
I.
(
2005
).
Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixtures
.
Proc. Combust. Inst
, Vol.
30
, pp.
201
208
.
14.
Speth, R. L., Marzouk, Y. M., Ghoniem, A. F. (2005). Impact of hydrogen addition on flame response to stretch and curvature. AIAA, Vol. 2005–0143
15.
Kaiser, C., Liu, J.-B., Ronney, P. D. (2000). Diffusive-thermal instability of counterflow flames at low Lewis number. AIAA, Vol. 2000–0576
16.
Griebel, P., Scha¨ren, R., Siewert, P., Bombach, R., Inauen, A., Kreutner, W. (2003). Flow field and structure of turbulent highpressure premixed methane/air flames. ASME, Vol. Paper No. GT2003–38398.
17.
Griebel, P., Bombach, R., Inauen, A., Scha¨ren, R., Schenker, S., Siewert, P. (2005). Flame characteristics and turbulent flame speeds of turbulent, high-pressure, lean premixed methane/air flames. ASME Turbo Expo 2005, Vol. Paper No. GT2005–68565
18.
Zimont
V. L.
,
Lipatnikov
A. N.
(
1995
).
A numerical model of premixed turbulent combustion of gases
.
Chem. Phys. Reports
, Vol.
14
, pp.
993
1025
.
19.
Peters, N. (2000) Turbulent Combustion. Cambridge University Press
20.
Lipatnikov
A. N.
,
Chomiak
J.
(
2002
).
Turbulent flame speed and thickness: phenomenology, evaluation and application in multidimensional simulations
.
Prog. Energy Combust. Sci.
, Vol.
28
, pp.
1
74
.
21.
Nakahara, M. (2006). Private Communication.
22.
Zel’dovich, Y. B., Barenblatt, G. I., Librovich, V. B., Makhviladze, G. M. (1985). The Mathematical Theory of Combustion and Explosions. New York: Plenum
23.
Halter, F., Cohe, C., Chauveau, C., Go¨kalp, I. (2005). Characterization of the effects of hydrogen addition in lean premixed methane/air turbulent flames at high pressure. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005 Istanbul, Turkey, 13–15 July 2005
24.
Smallwood
G. J.
,
Gu¨lder
O¨. L.
,
Snelling
D. R.
,
Deschamps
B. M.
,
Go¨kalp
I.
(
1995
).
Characterization of flame front surface in turbulent premixed methane/ air combustion
.
Combust. Flame
, Vol.
101
, pp.
461
470
.
25.
Kobayashi
H.
,
Nakashima
T.
,
Tamura
T.
,
Maruta
K.
,
Niioka
T.
(
1997
).
Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa
.
Combust. Flame
, Vol.
108
, pp.
104
117
.
26.
Lipatnikov
A. N.
,
Chomiak
J.
(
1998
).
Lewis Number Effects in Premixed Turbulent Combustion and Highly Perturbed Laminar Flames
.
Combust. Sci. and Tech.
, Vol.
137
, pp.
277
298
.
27.
Renou
B.
,
Boukhalfa
A.
,
Puechberty
D.
,
Trinite
M.
(
2000
).
Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis numbers
.
Combust. Flame
, Vol.
123
, pp.
507
521
.
28.
Chen
J. H.
,
Im
H. G.
(
2000
).
Stretch Effects on the Burning Velocity of Turbulent Premixed Hydrogen/Air Flames
.
Proc. Combust. Inst.
, Vol.
28
, pp.
211
211
.
29.
Im
H. G.
,
Chen
J. H.
(
2002
).
Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen-air flames
.
Combust. Flame
, Vol.
131
, pp.
246
258
.
30.
Schefer
R. W.
,
Lawn
C. J.
(
2006
).
Scaling of premixed turbulent flames in the corrugated regime
.
Combust. Flame
, Vol.
146
, pp.
180
199
.
31.
Bradley
D.
(
1992
).
How fast can we burn?
Proc. Combust. Inst.
, Vol.
24
, pp.
247
262
.
32.
Abdel-Gayed
R. G.
,
Bradley
D.
,
Lawes
M.
(
1987
).
Turbulent burning velocities: a general correlation in terms of straining rates
.
Proc. R. Soc. Lond.
, Vol.
A 414
, pp.
389
413
.
This content is only available via PDF.
You do not currently have access to this content.