A nonlinear fourth-order dynamic model of a thermal pulse combustor has been developed. In this work, the time series data generated by solution of the fourth order system is converted into a set of symbols based on the values of pressure variables. The key step to symbolization involves transformation of the original values to a stream of discretised symbols by partitioning the range of observed values into a finite number of regions and then assigning a symbol to each measurement based on the region in which it falls. Once all the measured values are symbolized, a symbol sequence vector consisting of L successive temporal observations is defined and its relative frequency is determined. In this work, the relative frequencies of different symbol sequences are computed by scanning the time series data in forward and reverse directions. The difference between the relative frequencies obtained in forward and reverse scanning is termed as "irreversibility" of the process. It is observed that for given alphabet and word sizes, the "irreversibility" increases as the system approaches extinction. The effects of different choices of alphabet and word sizes are also considered.

1.
Keller
J. O.
and
Hongo
I.
,
Pulse Combustion: The Mechanism of NOx Production
,
Combust. Flame
,
80
,
219
237
,
1990
.
2.
Keller
J. O.
,
Bramlette
T. T.
,
Barr
P. K.
and
Alvarez
J. R.
,
NOx and CO Emissions from a Pulse Combustor Operating in a Lean Premixed Mode
,
Combust. Flame
,
99
,
460
466
,
1994
.
3.
Margolis
S. B.
,
The Nonlinear Dynamics of Intrinsic Acoustic Oscillations in a Model Pulse Combustor
,
Combust. Flame
,
99
,
311
322
,
1994
.
4.
Richards
G. A.
,
Morris
G. J.
,
Shaw
D. W.
,
Kelley
S. A.
and
Welter
M. J.
,
Thermal Pulse Combustion
,
Combust. Sci. Technol
.,
94
,
57
85
,
1993
.
5.
Daw
C. S.
,
Thomas
J. F.
,
Richards
G. A.
and
Narayanaswamy
L. L.
,
Chaos in Thermal Pulse Combustion
,
Chaos
,
5
pp.
662
670
,
1995
.
6.
Rhode
M. A.
,
Rollins
R. W.
,
Markworth
A. J.
,
Edwards
K. D.
,
Nguyen
K.
,
Daw
C. S.
and
Thomas
J. F.
,
Controlling Chaos in a Model of Thermal Pulse Combustion
,
J. App. Phys.
,
78
,
2224
2232
,
1995
.
7.
In
V.
,
Spano
M. L.
,
Neff
J. D.
,
Ditto
W. L.
,
Daw
C. S.
,
Edwards
K. D.
and
Nguyen
K.
,
Maintenance of Chaos in a Computational Model of Thermal Pulse Combustor
,
Chaos
,
7
,
605
613
,
1997
.
8.
Edwards, K. D., Finney, C. E. A., Nguyen, K. and Daw, C. S., Application of Nonlinear Feedback Control to Enhance the Operation of a Pulsed Combustor, Proceedings of the 2000 Spring Technical Meeting of the Central States Sections of the Combustion Institute, 2000.
9.
Edwards, K. D., Nguyen, K. and Daw, C. S., Enhancing the Operation of a Pulsed Combustor with Trajectory-Correction Control, Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute, 2001.
10.
Tang
T. Z.
,
Tracy
E. R.
,
Boozer
A. D.
,
deBrauw
A.
and
Brown
R.
,
Symbol Sequence Statistics in Noisy Chaotic Signal Reconstruction
,
Phys. Rev. E
,
51
,
3871
3889
,
1995
.
11.
Daw
C. S.
,
Finney
C. E. A.
and
Kennel
M. B.
,
Symbolic approach for measuring temporal “irreversibility
”,
Phys. Rev. E
,
62
,
1912
1921
,
2000
.
12.
Daw
C. S.
,
Finney
C. E. A.
and
Tracy
E. R.
,
A review of symbolic analysis of experimental data
Rev. Sci. Instr.
,
74
,
915
930
,
2003
.
13.
Finney, C.E.A., Green, G.B., Jr., Daw, C.S., Symbolic Time-Series Analysis of Engine Combustion Measurements, SAE Paper#980624, 1998.
14.
Daw
C. S.
,
Kennel
M. B.
,
Finney
C. E. A.
and
Connolly
F. T.
,
Observing and Modeling Nonlinear Dynamics in an Internal Combustion Engine
,
Phys. Rev. E
,
57
,
2811
2819
,
1998
.
15.
Green, J. B., Jr., Daw, C. S., Armfield, J.S., Finney, C. E. A. and Durbetaki, P., Time Irreversibility of Cycle-by-Cycle Engine Combustion Variations, Proceedings of the 1998 Spring Technical Meeting of the Central States Sections of the Combustion Institute, 1998.
16.
Green, G.B., Jr., Wagner, R.M. and Daw, C.S., Model Based Control of Cyclic Dispersion in Lean Spark Ignition Combustion, Proc. 2002 Spring Technical Meeting of the Central States Section of the Combustion Institute, Knoxville, 2002.
17.
Ray
A.
,
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,
Signal Processing
, Vol.
84
,
1115
1130
,
2004
.
18.
Bukkapatnam
S.
,
Kumara
S.
and
Lakhtakia
A.
,
Analysis of Sensor Signal Shows Turning on a Lathe Exhibits Low-Dimensional Chaos
,
Physical Review E
, Vol.
52
, pp.
2375
2387
,
1995
.
19.
Bukkapatnam
S.
,
Kumara
S.
and
Lakhtakia
A.
,
Fractal Estimation of Flank Wear in Turning
,
ASME Journal of Dynamic Systems Measurement and Control
, Vol.
122
, pp.
89
94
,
2000
.
20.
Wattar, Hafez, W. and Gao, Z., Model-Based Diagnostics of Chaotic Dynamics of Chaotic Vibration Signals, IEEE Industrial Electronics Conference, San Jose, California, 1999.
21.
Chin
S. C.
,
Ray
A.
and
Rajagopalan
V.
,
Symbolic Time Series Analysis for Anomaly Detection: A Comparative Evaluation
,
Signal Processing
, Vol.
85
,
1859
1868
,
2005
.
22.
Gupta, S., Ray, A. and Keller, E., Symbolic Time Series Analysis of Ultrasonic Data for Early Detection of Fatigue Damage, Mechanical Systems and Signal Processing, To appear, 2005.
23.
Datta, S., Mukhopadhyay, A. and Sanyal, D., Modeling and Analysis of the Nonlinear Dynamics of a Thermal Pulse Combustor, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Paper# AIAA-2006-4396, 2006.
This content is only available via PDF.
You do not currently have access to this content.