A numerical model for particle transport in microchannel is presented. This article focuses on situations where the sizes of the particles are comparable to the sizes of the channels. The present approach is validated against (1) flow around stationary, (2) flow around forced rotating, (3) flow around freely rotating cylinders and (4) sedimentation of a circular cylinder under gravity. With the present model, the motion of particles carried by an incompressible fluid in a microchannel system is studied.
Volume Subject Area:
Heat Transfer
1.
Udaykumar
H. S.
Kan
H.
Shyy
W.
Tran-Sob-Tay
R.
Multiphase dynamics in arbitrary geometries on fixed Cartesian grids
, J. Comp. Physics
137
(1997
) 366
–405
.2.
Feng
J.
Hu
H. H.
Joseph
D. D.
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1: Sedimentation
, J. Fluid Mech.
261
(1994
) 95
–134
.3.
Feng
J.
Hu
H. H.
Joseph
D. D.
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 2: Couette and Poiseuille flows
, J. Fluid Mech.
277
(1994
) 271
–301
.4.
Phutthavong
P.
Hassan
I.
Transient performance of flow over a rotating object placed eccentrically inside a microchannel — numerical study
, Microfluid Nanofluid
1
(2004
) 71
–85
.5.
Glowinski
R.
Pan
T. W.
Hesla
T. I.
Joseph
D. D.
A distributed Lagrange multiplier/fictitious domain method for paniculate flows
, Int. J. of Multiphase Flow
25
(1999
) 755
–794
.6.
Turek
S.
Wand
D. C.
Rivkind
L. S.
The fictitious boundary method for the implicit treatment of Dirichlet boundary conditions with applications to incompressible flow simulation, Challenges in Scientific Computing
, Lecture Notes in Computational Science and Engineering
35
(2003
) 37
–68
.7.
Duchanoy
C.
Jongen
T. R. G.
Efficient simulation of liquid-solid flows with high solids fraction in complex geometries
, Computers & Fluids
32
(2003
) 1453
–1471
.8.
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publisher, New York, 1980.
9.
Silva
A. L. F. L. E.
Silveira-Neto
A.
Damasceno
J. J. R.
Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method
, J. of Comp. Physics
189
(2003
) 351
–370
.10.
Park
J.
Kwon
K.
Choi
H.
Numerical solutions of flow past a circular cylinder at Reynolds number up to 160
, KSME Int. J.
12
(1998
) 1200-
1200-
.11.
Sucker
D.
Brauer
H.
Fluiddynamik bei der angestromten Zilindern
, W€arme Stoffubertragung
8
(1975
) 149-
149-
12.
Dennis
S. C. R.
Chang
G.
Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100
, J. Fluid Mech.
42
(1970
) 471-
471-
13.
Ye
T.
Mittal
R.
Udaykumar
H. S.
Shyy
W.
An accurate Cartesian grid method for viscous inc`ompressible flows with complex boundaries
, J. Comp. Physics.
156
(1999
) 209
–240
.14.
Triton
D. J.
Experiments on the flow past a circular cylinder at low Reynolds number
, J. Fluid Mech.
6
(1959
) 547-
547-
15.
F.M. White, Viscous Fluid Flow, McGraw-Hill, New York, 1991.
16.
Tomotika
S.
Aoi
T.
An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small Reynolds number
, Quart. J. Mech. Appl. Math.
4
(1951
) 401
–406
.17.
Ingham
D. B.
Tang
T.
A numerical investigation into the steady flow past a rotating circular cylinder at low and intermediate Reynolds numbers
, J. of Comp. Physics.
87
(1990
) 91
–107
.18.
Tang
T.
Ingham
D. B.
On steady flow past a rotating circular cylinder at Reynolds numbers 60 and 100
, Computers & Fluids
19
(1991
) 217
–230
.19.
Jua´rez
H.
Scott
R.
Metcalfe
R.
Bagheri
B.
Direct simulation of freely rotating cylinders in viscous flows by high-order finite element methods
, Computers & Fluids
29
(2000
) 547
–582
.
This content is only available via PDF.
Copyright © 2006
by ASME
You do not currently have access to this content.