A numerical model for particle transport in microchannel is presented. This article focuses on situations where the sizes of the particles are comparable to the sizes of the channels. The present approach is validated against (1) flow around stationary, (2) flow around forced rotating, (3) flow around freely rotating cylinders and (4) sedimentation of a circular cylinder under gravity. With the present model, the motion of particles carried by an incompressible fluid in a microchannel system is studied.

1.
Udaykumar
H. S.
,
Kan
H.
,
Shyy
W.
and
Tran-Sob-Tay
R.
,
Multiphase dynamics in arbitrary geometries on fixed Cartesian grids
,
J. Comp. Physics
137
(
1997
)
366
405
.
2.
Feng
J.
,
Hu
H. H.
and
Joseph
D. D.
,
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1: Sedimentation
,
J. Fluid Mech.
261
(
1994
)
95
134
.
3.
Feng
J.
,
Hu
H. H.
and
Joseph
D. D.
,
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 2: Couette and Poiseuille flows
,
J. Fluid Mech.
277
(
1994
)
271
301
.
4.
Phutthavong
P.
and
Hassan
I.
,
Transient performance of flow over a rotating object placed eccentrically inside a microchannel — numerical study
,
Microfluid Nanofluid
1
(
2004
)
71
85
.
5.
Glowinski
R.
,
Pan
T. W.
,
Hesla
T. I.
and
Joseph
D. D.
,
A distributed Lagrange multiplier/fictitious domain method for paniculate flows
,
Int. J. of Multiphase Flow
25
(
1999
)
755
794
.
6.
Turek
S.
,
Wand
D. C.
and
Rivkind
L. S.
,
The fictitious boundary method for the implicit treatment of Dirichlet boundary conditions with applications to incompressible flow simulation, Challenges in Scientific Computing
,
Lecture Notes in Computational Science and Engineering
35
(
2003
)
37
68
.
7.
Duchanoy
C.
and
Jongen
T. R. G.
,
Efficient simulation of liquid-solid flows with high solids fraction in complex geometries
,
Computers & Fluids
32
(
2003
)
1453
1471
.
8.
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publisher, New York, 1980.
9.
Silva
A. L. F. L. E.
,
Silveira-Neto
A.
and
Damasceno
J. J. R.
,
Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method
,
J. of Comp. Physics
189
(
2003
)
351
370
.
10.
Park
J.
,
Kwon
K.
, and
Choi
H.
,
Numerical solutions of flow past a circular cylinder at Reynolds number up to 160
,
KSME Int. J.
12
(
1998
)
1200-
1200-
.
11.
Sucker
D.
and
Brauer
H.
,
Fluiddynamik bei der angestromten Zilindern
,
W€arme Stoffubertragung
8
(
1975
)
149-
149-
12.
Dennis
S. C. R.
and
Chang
G.
,
Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100
,
J. Fluid Mech.
42
(
1970
)
471-
471-
13.
Ye
T.
,
Mittal
R.
,
Udaykumar
H. S.
and
Shyy
W.
,
An accurate Cartesian grid method for viscous inc`ompressible flows with complex boundaries
,
J. Comp. Physics.
156
(
1999
)
209
240
.
14.
Triton
D. J.
,
Experiments on the flow past a circular cylinder at low Reynolds number
,
J. Fluid Mech.
6
(
1959
)
547-
547-
15.
F.M. White, Viscous Fluid Flow, McGraw-Hill, New York, 1991.
16.
Tomotika
S.
, and
Aoi
T.
,
An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small Reynolds number
,
Quart. J. Mech. Appl. Math.
4
(
1951
)
401
406
.
17.
Ingham
D. B.
and
Tang
T.
,
A numerical investigation into the steady flow past a rotating circular cylinder at low and intermediate Reynolds numbers
,
J. of Comp. Physics.
87
(
1990
)
91
107
.
18.
Tang
T.
and
Ingham
D. B.
,
On steady flow past a rotating circular cylinder at Reynolds numbers 60 and 100
,
Computers & Fluids
19
(
1991
)
217
230
.
19.
Jua´rez
H.
,
Scott
R.
,
Metcalfe
R.
and
Bagheri
B.
,
Direct simulation of freely rotating cylinders in viscous flows by high-order finite element methods
,
Computers & Fluids
29
(
2000
)
547
582
.
This content is only available via PDF.
You do not currently have access to this content.