Molecular dynamics simulations and the Green-Kubo method are used to predict the thermal conductivity of binary Lennard-Jones superlattices and alloys. The superlattice thermal conductivity trends are in agreement with those obtained through the direct method, verifying that the Green-Kubo method can be used to examine thermal transport in heterostructures. The simulation temperature and the constituent species are fixed while the superlattice period structure is varied with the goals of (i) minimizing the cross-plane thermal conductivity and (ii) maximizing the ratio of in-plane to cross-plane thermal conductivities. The superlattice thermal conductivity in both the cross-plane and in-plane directions is found to be greater than the corresponding alloy value and less than the value predicted from continuum theory. The anisotropy of the thermal conductivity tensor is found to be at a maximum for a superlattice with a uniform layer thickness. Lattice dynamics calculations are used to investigate the role of optical phonons in the thermal transport.

1.
Chen
G.
,
Dresselhaus
M. S.
,
Dresselhaus
G.
,
Fleurial
J.-P.
, and
Caillat
T.
,
2003
, “
Recent developments in thermoelectric materials
”.
International Materials Review
,
48
, pp.
45
66
.
2.
Capinski
W. S.
,
Maris
H. J.
,
Ruf
T.
,
Cardona
M.
,
Ploog
K.
, and
Katzer
D. S.
,
1999
. “
Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-prope technique
”.
Physical Review B
,
59
, pp.
8105
8113
.
3.
Chakraborty
S.
,
Kleint
C. A.
,
Heinrich
A.
,
Schneider
C. M.
, and
Schumann
J.
,
2003
, “
Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111)
”.
Applied Physics Letters
,
83
, pp.
4184
4186
.
4.
Borca-Tasciuc
T.
,
Liu
W.
,
Liu
J.
,
Zeng
T.
,
Song
D. W.
,
Moore
C. D.
,
Chen
G.
,
Wang
K. L.
,
Goorsky
M. S.
,
Radetic
T.
,
Gronsky
R.
,
Koga
T.
, and
Dresselhaus
M. S.
,
2000
. “
Thermal conductivity of symmetrically strained Si/Ge superlattices
”.
Superlattices and Microstructures
,
28
, pp.
199
206
.
5.
Yang
B.
,
Liu
W. L.
,
Liu
J. L.
,
Wang
K. L.
, and
Chen
G.
,
2002
, “
Measurements of anisotropic thermoelectric properties in superlattices
”.
Applied Physics Letters
,
81
, pp.
3588
3590
.
6.
Yao
T.
,
1987
. “
Thermal properties of AlAs/GaAs superlattices
”.
Applied Physics Letters
,
51
, pp.
1798
1800
.
7.
Huxtable
S. T.
,
Abramson
A. R.
,
Tien
C.-L.
,
Majumdar
A.
,
LaBounty
C.
,
Fan
X.
,
Zeng
G.
,
Bowers
J. E.
,
Shakouri
A.
, and
Croke
E. T.
,
2002
. “
Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices
”.
Applied Physics Letters
,
80
, pp.
1737
1739
.
8.
Venkatasubramanian
R.
,
2000
. “
Lattice thermal conductivity reduction and phonon localization behavior in superlattice structures
”.
Physical Review B
,
61
, pp.
3091
3097
.
9.
Simkin
M. V.
, and
Mahan
G. D.
,
2000
. “
Minimum thermal conductivity of superlattices
”.
Physical Review Letters
,
84
, pp.
927
930
.
10.
Yang, B., and Chen, G., 2003. “Partially coherent phonon heat conduction in superlattices”. Physical Review B, 67, p. 195311.
11.
Daly, B. C., Maris, H. J., Imamura, K., and Tamura, S., 2002. “Molecular dynamics calculation of the thermal conductivity of superlattices”. Physical Review B, 66, p. 024301.
12.
Daly, B. C., Maris, H. J., Tanaka, Y., and Tamura, S., 2003. “Molecular dynamics calculation of the in-plane thermal conductivity of GaAs/AlAs superlattices”. Physical Review B, 67, p. 033308.
13.
Chen, Y., Li, D., Lukes, J. R., Ni, Z., and Chen, M., 2005. “Minimum superlattice thermal conductivity from molecular dynamics”. Physical Review B, 72, p. 174302.
14.
Volz
S.
,
Saulnier
J. B.
,
Chen
G.
, and
Beauchamp
P.
,
2000
. “
Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques
”.
Microelectronics Journal
,
31
, pp.
815
819
.
15.
Abramson
A. A.
,
Tien
C.-L.
, and
Majumdar
A.
,
2002
. “
Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study
”.
Journal of Heat Transfer
,
124
, pp.
963
970
.
16.
Chen
G.
, and
Neagu
M.
,
1997
. “
Thermal conductivity and heat transfer in superlattices
”.
Applied Physics Letters
,
71
, pp.
2761
2763
.
17.
Stevens, R. J., Norris, P. M., and Zhigilei, L. V., 2004. “Molecular-dynamics study of thermal boundary resistance: Evidence of strong inelastic scattering transport channels”. In Proceedings of IMECE 2004, ASME. Paper number IMECE2004-60334.
18.
Schelling, P. K., Phillpot, S. R., and Keblinski, P., 2002. “Comparison of atomic-level simulation methods for computing thermal conductivity”. Physical Review B, 65, p. 144306.
19.
Ashcroft, N. W., and Mermin, N. D., 1976. Solid State Physics. Sauders College Publishing, Fort Worth.
20.
McGaughey, A. J. H., 2004. “Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity Prediction”. PhD Thesis, University of Michigan, Ann Arbor, MI.
21.
McGaughey
A. J. H.
, and
Kaviany
M.
,
2004
. “
Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon
”.
International Journal of Heat and Mass Transfer
,
47
, pp.
1783
1798
.
22.
McGaughey
A. J. H.
, and
Kaviany
M.
,
2004
. “
Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part II. Complex silica structures
”.
International Journal of Heat and Mass Transfer
,
47
, pp.
1799
1816
.
23.
McQuarrie, D. A., 2000. Statistical Mechanics. University Science Books, Sausalito.
24.
Chen
Y.
,
Li
D.
,
Yang
J.
,
Wu
Y.
,
Lukes
J. R.
, and
Majumdar
A.
,
2004
. “
Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires
”.
Physica B
,
349
, pp.
270
280
.
25.
Lukes
J. R.
,
Li
D. Y.
,
Liang
X.-G.
, and
Tien
C.-L.
, 2000. “
Molecular dynamics study of solid thin-film thermal conductivity
”.
Journal of Heat Transfer
,
122
, pp.
536
543
.
26.
Incropera, F. P., and DeWitt, D. P., 2002. Fundamentals of Heat and Mass Transfer. John Wiley and Sons, Inc., Hoboken, NJ.
27.
Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., and Majumdar, A., 2006. “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline seminconductors”. Physical Review Letters, 96, p. 045901.
28.
Che
J.
,
Cagin
T.
,
Deng
W.
, and
III
W. A. G.
,
2000
. “
Thermal conductivity of diamond and related materials from molecular dynamics simulations
”.
Journal of Chemical Physics
,
113
, pp.
6888
6900
.
29.
McGaughey, A. J. H., Hussein, M. I., Landry, E. S., Kaviany, M., and Hulbert, G. M., 2006. “Phonon band structure and thermal transport correlation in a layered diatomic crystal: Lattice dynamics theory and molecular dynamics simulations”. To appear in Physical Review B.
30.
Dove, M. T., 1993. Introduction to Lattice Dynamics. Cambridge University Press, Cambridge.
This content is only available via PDF.
You do not currently have access to this content.