Molecular dynamics simulations are used to predict the thermal resistance of solid-solid interfaces in crystalline superlattices using a new Green-Kubo formula. The materials on both sides of the interfaces studied are modeled with the Lennard-Jones potential and are only differentiated by their masses. To obtain the interface thermal resistance, a correlation length in the bulk materials is first predicted, which approaches a system-size independent value for larger systems. The interface thermal resistance is found to initially increase as the layer length is increased, and then to decrease as the phonon transport shifts from a regime dominated by ballistic transport to one dominated by diffusive transport.
Volume Subject Area:
Heat Transfer
1.
Chen
G.
Dresselhaus
M. S.
Dresselhaus
G.
Fleurial
J.-P.
Caillat
T.
2003
. “Recent developments in thermoelectric materials
”, International Materials Reviews
, 48
, pp. 45
–66
.2.
Kim
W.
Zide
J.
Gossard
A.
Klenov
D.
Stemmer
S.
Shakouri
A.
Majumdar
A.
2006
. “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline seminconductors
”, Physical Review Letters
, 96
, p. 045901
045901
.3.
Simkin
M. V.
Mahan
G. D.
2000
. “Minimum thermal conductivity of superlattices
”, Physical Review Letters
, 84
, pp. 927
–930
.4.
Bies
W. E.
Radtke
R. J.
Ehrenreich
H.
2000
. “Phonon dispersion effects and the thermal conductivity reduction in GaAs/AlAs superlattices
”, Journal of Applied Physics
, 88
, pp. 1498
–1503
.5.
Yang
B.
Chen
G.
2001
, “Lattice dynamics study of anisotropic heat conduction in superlattices
”, Microscale Thermophysical Engineering
, 5
, pp. 107
–116
.6.
Abramson
A. R.
Tien
C.-L.
Majumdar
A.
2002
, “Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study
”, Journal of Heat Transfer
, 124
, pp. 963
–970
.7.
Daly
B. C.
Maris
H. J.
Imamura
K.
Tamura
S.
2002
. “Molecular dynamics calculation of the thermal conductivity of superlattices
”, Physical Review B
, 66
, p. 024301
024301
.8.
Daly
B. C.
Maris
H. J.
Tanaka
Y.
Tamura
S.
2003
. “Molecular dynamics calculation of the in-plane thermal conductivity of GaAs/AlAs superlattices
”, Physical Review B
, 67
, p. 033308
033308
.9.
Broido
D. A.
Reinecke
T. L.
2004
. “Lattice thermal conductivity of superlattice structures
”, Physical Review B
, 70
, p. 081310
081310
(R).10.
Chen
Y.
Li
D.
Yang
J.
Wu
Y.
Lukes
J. R.
Majumdar
A.
2004
. “Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires
”, Physica B
, 349
, pp. 270
–280
.11.
Dames
C.
Chen
G.
2004
. “Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires
”, Journal of Applied Physics
, 95
, pp. 682
–693
.12.
Chen
Y.
Li
D.
Lukes
J. R.
Ni
Z.
Chen
M.
2005
. “Minimum superlattice thermal conductivity from molecular dynamics
”, Physical Review B
, 72
, p. 174302
174302
.13.
Young
D. A.
Maris
H. J.
1989
. “Lattice-dynamical calculation of the Kapitza resistance between fee lattices
”, Physical Review B
, 40
, pp. 3685
–3693
.14.
Stoner
R. J.
Maris
H. J.
1993
. “Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K
”, Physical Review B
, 48
, pp. 16373
–16387
.15.
Maiti
A.
Mahan
G. D.
Pantelides
S. T.
1997
. “Dynamical simulation of nonequilibrium processes - Heat flow and the Kapitza resistance across grain boundaries
”, Solid State Comminications
, 102
, pp. 517
–521
.16.
Schelling
P. K.
Phillpot
S. R.
2003
. “Multiscale simulation of phonon transport in superlattices
”, Journal of Applied Physics
, 93
, pp. 5377
–5387
.17.
Twu
C.-J.
Ho
J.-R.
2003
. “Molecular-dynamics study of energy flow and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films
”, Physical Review B
, 67
, p. 205422
205422
.18.
Schelling
P. K.
Phillpot
S. R.
Keblinski
P.
2004
. “Kapitza conductance and phonon scattering at grain boundaries by simulation
”, Journal of Applied Physics
, 95
, pp. 6082
–6091
.19.
Zhao
H.
Freund
J. B.
2005
. “Lattice-dynamical calculation of phonon scattering at ideal Si-Ge interfaces
”, Journal of Applied Physics
, 97
, p. 024903
024903
.20.
Swartz
E. T.
Pohl
R. O.
1989
. “Thermal boundary resistance
”, Review of Modern Physics
, 61
, pp. 605
–668
.21.
Swartz
E. T.
Pohl
R. O.
1987
. “Thermal resistance at interfaces
”, Applied Physics Letters
, 51
, pp. 2200
–2202
.22.
Stevens, R. J., Norris, P. M., and Zhigilei, L. V., 2004. “Molecular-dynamics Study of thermal boundary resistance: Evidence of strong inelastic scattering transport channels”, In Proceedings of IMECE 2004, ASME. Paper number IMECE2004-60334.
23.
Angadi
M. A.
Watanabe
T.
Bodapati
A.
Xiao
X.
Auciello
O.
Carlisle
J. A.
Eastman
J. A.
Keblinski
P.
Schelling
P. K.
Phillpot
S. R.
2006
. “Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films
”, Journal of Applied Physics
, 99
, p. 114301
114301
.24.
McQuarrie, D. A., 2000. Statistical Mechanics, University Science Books, Sausalito.
25.
Puech
L.
Bonfait
G.
Castaing
B.
1986
. “Mobility of the 3He solid-liquid interface: Experiment and theory
”, Journal of Low Temperature Physics
, 62
, pp. 315
–327
.26.
Barrat
J.-L.
Chiaruttini
F.
2003
. “Kapitza resistance at the liquid-solid interface
”, Molecular Physics
, 101
, pp. 1605
–1610
.27.
Shenogin
S.
Keblinski
P.
Bedrov
D.
Smith
G. D.
2006
. “Thermal relaxation and role of chemical functionalization in fullerene solutions
”, Journal of Chemical Physics
, 124
, p. 014702
014702
.28.
Ladd
A. J. C.
Moran
B.
Hoover
W. G.
1986
. “Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics
”, Physical Review B
, 34
, pp. 5058
–5064
.29.
Lukes
J.
Li
D. Y.
Liang
X.-G.
Tien
C.-L.
2000
. “Molecular dynamics study of solid thin-film thermal conductivity
”, Journal of Heat Transfer
, 122
, pp. 536
–543
.30.
McGaughey
A. J. H.
Kaviany
M.
2004
. “Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon
”, International Journal of Heat and Mass Transfer
, 47
, p. 1783
1783
.31.
McGaughey
A. J. H.
Kaviany
M.
2004
. “Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation
”, Physical Review B
, 69
, p. 094303
094303
.32.
McGaughey, A. J. H., Hussein, M. I., Landry, E. S., Kaviany, M., and Hulbert, G. M. “Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal”, to appear in Physical Review B.
33.
Schelling
P. K.
Phillpot
S. R.
Kelinski
P.
2002
. “Comparison of atomic-level simulation methods for computing thermal conductivity
”, Physical Review B
, 65
, p. 144306
144306
.
This content is only available via PDF.
Copyright © 2006
by ASME
You do not currently have access to this content.