Molecular dynamics simulations are used to predict the thermal resistance of solid-solid interfaces in crystalline superlattices using a new Green-Kubo formula. The materials on both sides of the interfaces studied are modeled with the Lennard-Jones potential and are only differentiated by their masses. To obtain the interface thermal resistance, a correlation length in the bulk materials is first predicted, which approaches a system-size independent value for larger systems. The interface thermal resistance is found to initially increase as the layer length is increased, and then to decrease as the phonon transport shifts from a regime dominated by ballistic transport to one dominated by diffusive transport.

1.
Chen
G.
,
Dresselhaus
M. S.
,
Dresselhaus
G.
,
Fleurial
J.-P.
, and
Caillat
T.
,
2003
. “
Recent developments in thermoelectric materials
”,
International Materials Reviews
,
48
, pp.
45
66
.
2.
Kim
W.
,
Zide
J.
,
Gossard
A.
,
Klenov
D.
,
Stemmer
S.
,
Shakouri
A.
, and
Majumdar
A.
,
2006
. “
Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline seminconductors
”,
Physical Review Letters
,
96
, p.
045901
045901
.
3.
Simkin
M. V.
, and
Mahan
G. D.
,
2000
. “
Minimum thermal conductivity of superlattices
”,
Physical Review Letters
,
84
, pp.
927
930
.
4.
Bies
W. E.
,
Radtke
R. J.
, and
Ehrenreich
H.
,
2000
. “
Phonon dispersion effects and the thermal conductivity reduction in GaAs/AlAs superlattices
”,
Journal of Applied Physics
,
88
, pp.
1498
1503
.
5.
Yang
B.
, and
Chen
G.
,
2001
, “
Lattice dynamics study of anisotropic heat conduction in superlattices
”,
Microscale Thermophysical Engineering
,
5
, pp.
107
116
.
6.
Abramson
A. R.
,
Tien
C.-L.
, and
Majumdar
A.
,
2002
, “
Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study
”,
Journal of Heat Transfer
,
124
, pp.
963
970
.
7.
Daly
B. C.
,
Maris
H. J.
,
Imamura
K.
, and
Tamura
S.
,
2002
. “
Molecular dynamics calculation of the thermal conductivity of superlattices
”,
Physical Review B
,
66
, p.
024301
024301
.
8.
Daly
B. C.
,
Maris
H. J.
,
Tanaka
Y.
, and
Tamura
S.
,
2003
. “
Molecular dynamics calculation of the in-plane thermal conductivity of GaAs/AlAs superlattices
”,
Physical Review B
,
67
, p.
033308
033308
.
9.
Broido
D. A.
, and
Reinecke
T. L.
,
2004
. “
Lattice thermal conductivity of superlattice structures
”,
Physical Review B
,
70
, p.
081310
081310
(R).
10.
Chen
Y.
,
Li
D.
,
Yang
J.
,
Wu
Y.
,
Lukes
J. R.
, and
Majumdar
A.
,
2004
. “
Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires
”,
Physica B
,
349
, pp.
270
280
.
11.
Dames
C.
, and
Chen
G.
,
2004
. “
Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires
”,
Journal of Applied Physics
,
95
, pp.
682
693
.
12.
Chen
Y.
,
Li
D.
,
Lukes
J. R.
,
Ni
Z.
, and
Chen
M.
,
2005
. “
Minimum superlattice thermal conductivity from molecular dynamics
”,
Physical Review B
,
72
, p.
174302
174302
.
13.
Young
D. A.
, and
Maris
H. J.
,
1989
. “
Lattice-dynamical calculation of the Kapitza resistance between fee lattices
”,
Physical Review B
,
40
, pp.
3685
3693
.
14.
Stoner
R. J.
, and
Maris
H. J.
,
1993
. “
Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K
”,
Physical Review B
,
48
, pp.
16373
16387
.
15.
Maiti
A.
,
Mahan
G. D.
, and
Pantelides
S. T.
,
1997
. “
Dynamical simulation of nonequilibrium processes - Heat flow and the Kapitza resistance across grain boundaries
”,
Solid State Comminications
,
102
, pp.
517
521
.
16.
Schelling
P. K.
, and
Phillpot
S. R.
,
2003
. “
Multiscale simulation of phonon transport in superlattices
”,
Journal of Applied Physics
,
93
, pp.
5377
5387
.
17.
Twu
C.-J.
, and
Ho
J.-R.
,
2003
. “
Molecular-dynamics study of energy flow and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films
”,
Physical Review B
,
67
, p.
205422
205422
.
18.
Schelling
P. K.
,
Phillpot
S. R.
, and
Keblinski
P.
,
2004
. “
Kapitza conductance and phonon scattering at grain boundaries by simulation
”,
Journal of Applied Physics
,
95
, pp.
6082
6091
.
19.
Zhao
H.
, and
Freund
J. B.
,
2005
. “
Lattice-dynamical calculation of phonon scattering at ideal Si-Ge interfaces
”,
Journal of Applied Physics
,
97
, p.
024903
024903
.
20.
Swartz
E. T.
, and
Pohl
R. O.
,
1989
. “
Thermal boundary resistance
”,
Review of Modern Physics
,
61
, pp.
605
668
.
21.
Swartz
E. T.
, and
Pohl
R. O.
,
1987
. “
Thermal resistance at interfaces
”,
Applied Physics Letters
,
51
, pp.
2200
2202
.
22.
Stevens, R. J., Norris, P. M., and Zhigilei, L. V., 2004. “Molecular-dynamics Study of thermal boundary resistance: Evidence of strong inelastic scattering transport channels”, In Proceedings of IMECE 2004, ASME. Paper number IMECE2004-60334.
23.
Angadi
M. A.
,
Watanabe
T.
,
Bodapati
A.
,
Xiao
X.
,
Auciello
O.
,
Carlisle
J. A.
,
Eastman
J. A.
,
Keblinski
P.
,
Schelling
P. K.
, and
Phillpot
S. R.
,
2006
. “
Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films
”,
Journal of Applied Physics
,
99
, p.
114301
114301
.
24.
McQuarrie, D. A., 2000. Statistical Mechanics, University Science Books, Sausalito.
25.
Puech
L.
,
Bonfait
G.
, and
Castaing
B.
,
1986
. “
Mobility of the 3He solid-liquid interface: Experiment and theory
”,
Journal of Low Temperature Physics
,
62
, pp.
315
327
.
26.
Barrat
J.-L.
, and
Chiaruttini
F.
,
2003
. “
Kapitza resistance at the liquid-solid interface
”,
Molecular Physics
,
101
, pp.
1605
1610
.
27.
Shenogin
S.
,
Keblinski
P.
,
Bedrov
D.
, and
Smith
G. D.
,
2006
. “
Thermal relaxation and role of chemical functionalization in fullerene solutions
”,
Journal of Chemical Physics
,
124
, p.
014702
014702
.
28.
Ladd
A. J. C.
,
Moran
B.
, and
Hoover
W. G.
,
1986
. “
Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics
”,
Physical Review B
,
34
, pp.
5058
5064
.
29.
Lukes
J.
,
Li
D. Y.
,
Liang
X.-G.
, and
Tien
C.-L.
,
2000
. “
Molecular dynamics study of solid thin-film thermal conductivity
”,
Journal of Heat Transfer
,
122
, pp.
536
543
.
30.
McGaughey
A. J. H.
, and
Kaviany
M.
,
2004
. “
Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon
”,
International Journal of Heat and Mass Transfer
,
47
, p.
1783
1783
.
31.
McGaughey
A. J. H.
, and
Kaviany
M.
,
2004
. “
Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation
”,
Physical Review B
,
69
, p.
094303
094303
.
32.
McGaughey, A. J. H., Hussein, M. I., Landry, E. S., Kaviany, M., and Hulbert, G. M. “Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal”, to appear in Physical Review B.
33.
Schelling
P. K.
,
Phillpot
S. R.
, and
Kelinski
P.
,
2002
. “
Comparison of atomic-level simulation methods for computing thermal conductivity
”,
Physical Review B
,
65
, p.
144306
144306
.
This content is only available via PDF.
You do not currently have access to this content.