A 3D elastic-plastic rough contact (EPC) solution and code is developed using a modified semi-analytical method. The total surface deflection is induced by the contact pressure and plastic strain. A purely elastic contact field and a residual field arising from the plastic deformation are simulated iteratively to gain the final approximate solution for the elastic-plastic rough contact. Frictionless normal contact between a rigid ball and an elastic-plastic half space with polished, turned, and honed rough surfaces was numerically simulated using the developed EPC code. The distributions of surface pressures, real contact area, total stresses, residual stresses, residual displacements, and plastic strains are obtained through simulation. The effects of surface roughness, wavelength, and plastic hardening behavior upon the calculated results are analyzed.

1.
Greenwood
J. A.
, and
Williamson
J. B. P.
,
1966
, “
Contact of nominally flat surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
2.
Bush
A. W.
,
Gibson
R. D.
, and
Thomas
T. R.
,
1975
, “
Elastic Contact of a Rough Surface
,”
Wear
,
35
(
1)
, pp.
87
111
.
3.
Archard, J. F., Hunt, R. T., and Onions, R. A., 1975, “Stylus profilometry and the analysis of the contact of rough surfaces,” The Mechanics of the Contact Between Deformable Bodies, Delft University Press, pp. 282–303.
4.
Chang
W. R.
,
Etsion
I.
, and
Bogy
D. B.
,
1987
, “
An elastic-plastic model for the contact of rough surfaces
”,
Journal of Tribology
,
109
, pp.
257
263
.
5.
Hendriks
C. P.
and
Visscher
M.
,
1995
, “
Accurate real area of contact measurements on polyurethane
,”
Journal of Tribology
,
117
(
4)
:
607
611
.
6.
Komvopoulos
K.
and
Choi
D.-H.
,
1992
, “
Elastic finite element analysis of multi-asperity contacts
,”
Journal of Tribology
,
114
, pp.
823
831
.
7.
Liu
G.
,
Zhu
J.
,
Yu
L.
, and
Wang
Q. J.
,
2001
, “
Elasto-plastic contact of rough surfaces
,”
Tribology Transactions
,
44
(
3)
, pp.
437
443
.
8.
Kogut
L.
and
Etsion
I.
,
2002
, “
Elastic-plastic contact analysis of a sphere and a rigid flat
,”
Journal of Applied Mechanics
,
69
(
5)
, pp.
657
662
.
9.
Kogut
L.
and
Etsion
I.
,
2003
, “
A finite element based elastic-plastic model for the contact of rough surfaces
,”
Tribology Transactions
,
46
(
3)
, pp.
383
390
.
10.
Kadiric
A.
,
Sayles
R. S.
,
Zhou
X. B.
, and
Ioannides
E.
,
2003
, “
A numerical study of the contact mechanics and sub-surface stress effects experienced over a range of machined surface coatings in rough surface contacts
,”
Journal of Tribology
,
125
, pp.
720
730
.
11.
Polonsky
I. A.
and
Keer
L. M.
,
2000
, “
A fast and accurate method for numerical analysis of elastic layered contacts
,”
Journal of Tribology
,
122
(
1)
, pp.
30
35
.
12.
Liu
S. B.
,
Wang
Q. J.
, and
Liu
G.
,
2000
, “
A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses
,”
Wear
,
243
(
1–2)
, pp.
101
111
.
13.
Nogi
T.
and
Kato
T.
,
1997
, “
Influence of a hard surface layer on the limit of elastic contact — part I: analysis using a real surface model
,”
Journal of Tribology
,
119
, pp.
493
500
.
14.
Sainsot
P.
,
Jacq
C.
, and
Ne´lias
D.
,
2002
, “
A numerical model for elastoplastic rough contact
,”
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES
,
3
(
4)
, pp.
497
506
.
15.
Jacq
C.
,
Ne´lias
D.
,
Lormand
G.
and
Girodin
D.
,
2002
, “
Development of a three-dimensional semi-analytical elastic-plastic contact code
,”
Journal of Tribology
,
124
(
4)
, pp.
653
667
.
16.
Wang
F.
and
Keer
L. M.
,
2005
, “
Numerical Simulation for Elastic-Plastic Contact with Hardening Behavior
”,
Journal of Tribology
,
127
(
3)
, pp.
494
502
.
17.
Boussinesq, J., 1885, Application des potentials a l’etude de l’equilibre et du mouvement des solids elastique, Gauthier-Villars, Paris.
18.
Polonsky
I. A.
and
Keer
L. M.
,
1999
, “
A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques
,”
Wear
,
231
(
2)
, pp.
206
219
.
19.
Chiu
Y. P.
,
1978
, “
Stress-Field and Surface Deformation in a Half Space with a Cuboidal Zone in Which Initial Strains Are Uniform
,”
Journal of Applied Mechanics
,
45
(
2)
, pp.
302
306
20.
Hill, R., 1998, The Mathematical Theory of Plasticity (Oxford Classic Texts in the Physical Sciences), Oxford University Press, Cambridge
This content is only available via PDF.
You do not currently have access to this content.