This paper deals with weight optimization of a current vehicle body without affecting its styling, natural frequencies and front crashworthiness performance. A CAE-driven approach is adopted using commercially available OptiStruct and LS-DYNA solvers. While an automated iterative approach is used for size- and topology-based weight optimization with natural frequencies as constraints, crashworthiness requirements are incorporated into the weight-optimized model using engineering insight. It is found that significant weight reduction of an existing vehicle platform can be achieved through a methodical and ingenious utilization of optimization and crash simulation tools as demonstrated in the present study.

1.
Wang
L.
,
Basu
P. K.
,
Leiva
J. P.
, ‘
Automobile body reinforcement by finite element optimization
’,
Finite Elements in Anal. Des
40
(
2004
)
879
893
.
2.
Chiandussi
G.
,
Gaviglio
I.
,
Ibba
A.
, ‘
Topology optimisation of an automotive component without final volume constraint specification
’,
Advances in Engg. Software
35
(
2004
)
609
617
.
3.
Sakurada
M.
,
Nagasawa
O.
,
Oshino
M.
, ‘
Application of optimization technique to weight reduction of automobile bodies
’,
JSAE
15
(
1994
)
21
26
.
4.
C.J. Chen, S. Maire, M. Usman, ’Improved fuel tank design using optimization’, ASME McNu97’ Design Optimization with Applications in Industry Symposium. Chicago, 1997.
5.
Chen
C. J.
,
Usman
M.
, ‘
Design optimization for automobile applications
’,
Int. J. Vehicle Des.
25
(
2001
)
126
141
.
6.
J.P. Leiva, L. Wang, S. Recek, B.C. Watson, ’Automobile design using the GENESIS structural optimization program’, NAFEMS Advances in Optimization Technologies for Product Design, Chicago, IL, 2001.
7.
Bendsoe
M. P.
,
Kikuchi
N.
, ‘
Generating optimal topologies in structural design using a homogenization method
’,
Comp. Meth. Appl. Mech. Eng.
71
(
1988
)
197
224
.
8.
M. Brughmans, S. Goossens, V. Cibrario, ’Cross attribute optimization to support vehicle development process by simulation driven design’, SAE 2002-01-1985 (2002).
9.
Maute
K.
,
Raulli
M.
, ‘
An interactive method for the selection of design criteria and the formulation of optimization problems in computer aided optimal design
’,
Computers and Structures
,
82
(
2004
)
71
79
.
10.
Deb
A.
,
Mahendrakumar
M. S.
,
Chavan
C.
,
Karve
J.
,
Blankenburg
D.
,
Storen
S.
, ‘
Design of an aluminum-based vehicle platform for front impact safety
’,
Int. J. of Impact Engg
,
30
(
8–9)
,
1055
1079
(
2004
).
11.
Sobieski
J.
,
Kodiyalam
S.
,
Yang
R. J.
, ‘
Optimization of car body under constraints of noise, vibration and harshness (NVH), and crash
’,
Structural and Multidisciplinary Optimization Journal
,
22
(
4)
,
295
306
(
2001
).
12.
Kodiyalam
S.
,
Yang
R. J.
,
Gu
L.
,
Tho
C. H
, ‘
Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment
’,
Structural and Multidisciplinary Optimization Journal
,
26
(
3–4)
,
235
248
(
2004
).
13.
R.J. Yang, L. Gu, C.H. Tho, J. Sobieski, ’Multidisciplinary design optimization of a full vehicle with high performance computing’, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Seattle, WA, 2001.
14.
K. Craig, N. Stander, D. Dooge, S. Varadappa, ’MDO of automotive vehicle for crashworthiness and NVH using response surface methods’, AIAA-2002-5607, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, Georgia, 2002.
15.
N. Tzannetakis, P. van Vooren, B. Lauber, ’The use of OPTIMUS for advanced multidisciplinary structural optimization in automotive applications’, NAFEMS Seminar, Wiesbaden, April 27–28, 2005.
This content is only available via PDF.
You do not currently have access to this content.