The nearly one dimensional carbon nanotubes with their novel physical and mechanical properties have received ever increasing attention in recent years for the use in a wide range of applications in which semiconductor nano-structures, nano-devices/sensors, and nano-electro-mechanical systems are to be integrated. However, carbon nanotubes exist in various chirality configurations each of which may perform differently when they are subjected to external mechanical and thermal loads, temperatures changes, and magnetic fields. Therefore, a detailed and fundamental investigation of the effects of chirality angles on thermomechanical performance of carbon nanotubes is needed to explain the behavior of such structures. Here in this work, finite element method (FEM) is employed to numerically investigate the responses of carbon nanotubes to external mechanical loads and temperatures changes. Single-walled carbon nanotubes (SWCNTs) with different chirality configurations, i.e., zigzag, armchair, and chiral are modeled and their effective thermomechanical properties are investigated. Finally, results are discussed and compared with the existing results from literature.

1.
Dresselhaus, M. S., Dresselhaus, G., and Avouris, P., 2000. “Carbon Nanotubes: Synthesis, Structure, Properties, and Applications,” Springer, New York.
2.
Ajayan, P. M., Schadler, L. S., and Braun, P. V., 2003. “Nanocomposite Science and Technology,” Wiley-VCH, Weinheim.
3.
Liu
J. P.
,
1997
. “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Physical Review Letters
,
79
, pp.
1297
1300
.
4.
Treacy
M. M. J.
,
Ebbesen
T. W.
, and
Gibson
J. M.
,
1996
. “
Exceptionally high Young’s modulus observed for individual nanotubes
,”
Nature
,
381
, pp.
678
680
.
5.
Baughman
H.
,
Zakhidov
A. A.
, and
de Heer
W. A.
,
2002
. “
Carbon-Nanotubes—the route Towards Applications
,”
Science
,
297
,
787
792
.
6.
Mpourmpakis
G.
,
Tylianakis
E.
, and
Froudakis
G.
,
2006
. “
Hydrogen Storage in Carbon Nanotubes: A Multi-Scale Theoretical Study
,”
Journal of Nanoscience and Nanotechnology
,
6
, pp.
87
90
.
7.
Veedu, V.P., Cao A., LI, X., Ma, K., Soldano, K., Kar, S., Ajayan, P.M., and Ghasemi-Nejhad, M.N., 2006. “Multifunctional composites using reinforced laminae with carbon nanotube forests,” Nature Materials, doi:10.1038/nmat1650.
8.
Cao
A.
,
Veedu
V. P.
,
LI
X.
,
Yao
Z.
,
Ghasemi-Nejhad
M. N.
, and
Ajayan
P. M.
,
2005
. “
Multifunctional brushes made from carbon nanotubes
,”
Nature Materials
,
4
, pp.
540
545
.
9.
Cao
A.
,
Dickrell
P. L.
,
Sawyer
W. G.
,
Ghasemi-Nejhad
M. N.
, and
Ajayan
P. M.
,
2005
. “
Supercompressible foamlike films of carbon nanotubes
,”
Science
,
310
,
1307
1310
.
10.
Che
J.
,
Cagin
T.
, and
Goddard
W. A.
,
2000
. “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
,
11
, 2000, pp.
65
69
.
11.
Lusti
H. R.
, and
Gusev
A. A.
,
2004
. “
Finite Element Predictions for the Thermoelastic Properties of Nanotube Reinforced Polymers
,”
Modeling and Simulations in Materials Science and Engineering
,
12
, pp.
107
119
.
12.
Kwon
Y. K.
,
Berber
S.
, and
Tomanek
D.
,
2004
. “
Thermal Contraction of Carbon Fullerenes and Nanotubes
,”
Physical Review Letters
,
92
, pp.
015901
-
1
.
13.
Huang, X. M. H., Caldwell, R., Chandra, B., Jun, S. C., Huang, M., and Hone, J., 2005. “Controlled Manipulation of Carbon Nanotubes for Nanodevices, Arrays, and Films,” NANO2005, Integrated Nanosystems Conference, paper # 87033, Berkeley, CA.
14.
Maniwa
Y.
,
Fujiwara
R.
,
Kira
H.
,
Tou
H.
,
Kataura
H.
,
Suzuki
S.
,
Achiba
Y.
,
Nishibori
E.
,
Takata
M.
,
Sakata
M.
,
Fujiwara
A.
, and
Suematsu
H.
,
2001
. “
Thermal Expansion of Single-Walled Carbon Nanotube (SWNT) Bundles: X-ray Diffraction Studies
”,
Physical Review B
,
64
, pp.
1
3
.
15.
Yosida
Y.
,
2000
. “
High-Temperature Shrinkage of single-Walled Carbon Nanotube Bundles up to 1600 K
,”
Journal of Applied Physics
,
87
, pp.
3338
3341
.
16.
Guseva
O.
,
Lusti
H. R.
, and
Gusev
A. A.
,
2004
. “
Matching Thermal Expansion of MicaPolymer Nanocomposites and Metals
,”
Modelling and Simulation in Materials. Science and Engineering
,
12
, 2004, pp.
101
106
.
17.
Schelling
P. K.
and
Keblinski
P.
,
2003
. “
Thermal Expansion of Carbon Structures
,”
Physical Review B
,
68
, pp.
035425
-
1
.
18.
Jiang
H.
,
Liu
B.
, and
Huang
Y.
,
2004
. “
Thermal Expansion of Single Walled Carbon Nanotubes
,”
Journal of Engineering Materials and Technology
,
126
,
265
270
.
19.
Krishnan
A.
,
Dujardin
E.
,
Ebbesen
T. W.
,
Yianilos
P. N.
, and
Treacy
M. M. J.
,
1998
. “
Young’s Modulus of Single-Walled Nanotubes
,”
Physical Review B
,
58
, pp.
14013
9
.
20.
Liang
S. D.
and
Xu
N. S.
,
2003
. “
Chirality Effect of Single-Wall Carbon Nanotubes on Field Emission
,”
Applied Physics Letters
,
83
, pp.
1213
1215
.
21.
Krstic
V.
,
Wagnie`re
G.
, and
Rikken
G. L. J. A.
,
2004
, “
Mechanical Dynamics of Chiral Carbon Nanotubes: Magnetochyrodynamic Effects
,”
American Institute of Physics, Conference Proceedings
723
, pp.
121
128
.
22.
Zhang
W.
,
Zhu
Z.
,
Wang
F
,
Wang
T.
,
Sun
L.
, and
Wang
Z.
,
2004
. “
Chirality Dependence of the Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
,
15
, pp.
936
939
.
23.
Osman
M. A.
and
Srivastava
D.
,
2001
. “
Temperature Dependence of Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Nanotechnology
,
12
, pp.
21
24
.
24.
Ghasemi-Nejhad
M. N.
and
Askari
D.
,
2005
Mechanical Properties Modeling of Carbon Single-Walled Nanotubes: A Finite Element Method
,”
Journal of Computational and Theoretical Nanoscience
,
2
, pp.
298
318
.
25.
Veedu, V. P., Askari, D., and Ghasemi-Nejhad, M. N., 2006. “Chirality Dependence of Carbon Single-Walled Nanotube Material Properties: Axial Young’s Modulus,” Journal of Nanoscience and Nanotechnology, in press.
26.
Askari, D., Veedu, V. P., and Ghasemi-Nejhad, M. N., 2006. “Chirality Dependence of Carbon Single-Walled Nanotube Material Properties: Axial Coefficients of Thermal Expansion,” Journal of Nanoscience and Nanotechnology, in press.
27.
ANSYS User’s Manual. ANSYS Inc., 2006. Canonsburg, PA.
28.
Yao
N.
and
Lordi
V.
,
1998
. “
Young’s Modulus of Single-Walled Carbon Nanotubes
,”
Journal of Applied Physics
,
84
, pp.
1939
1939
.
29.
Salvetat
J.-P.
,
Bonard
J.-M.
,
Thomson
N. H.
,
Kulik
A. J.
,
Forr’o
L.
,
Benoit
W.
, and
Zuppiroli
L.
,
1999
. “
Mechanical Properties of Carbon Nanotubes
,”
Applied physics A
,
69
, pp.
255
260
.
30.
Srivastava
D.
,
Wei
C.
, and
Cho
K.
,
2003
. “
Nanomechanics of Carbon Nanotubes and Composites
,”
Applied Mechanics Reviews
,
56
, pp.
215
230
.
31.
Robertson
D. H.
,
Brenner
D. W.
, and
Mintmire
J. W.
,
1992
. “
Energetics of Nanoscale Graphitic Tubules
,”
Physical Review B
,
45
, pp.
12592
4
.
32.
Hernandez
E.
,
Goze
C.
,
Bernier
P.
, and
Rubio
A.
,
1998
. “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Physical Review Letters
,
80
, pp.
45025
45025
.
33.
Ruoff
R. S.
and
Lorents
D. C.
,
1995
. “
Mechanical and thermal properties of carbon nanotubes
,”
Carbon
33
,
925
9
.
This content is only available via PDF.
You do not currently have access to this content.