The increasing demand for fabrication of smaller structural and electronic devices with higher performance such as NEMS/MEMS has created great interest and motivation for extensive research and investigations in nanotechnology and its applications. Unique mechanical, thermal, and electrical properties of the one dimensional carbon nanotubes (CNTs) structures project CNTs as an excellent candidate for the future NEMS/MEMS devices. However, carbon nanotubes do not always exist in their perfect hexagonal lattice structures. Defects may appear during the purification stages or chemical treatments as it might even be desirable for functionalization of carbon nanotubes. On the other hand, defects can greatly influence the mechanical performance of carbon nanotubes in structural applications where they are subjected to external mechanical loads. Therefore, a detailed investigation of the effects of defects on mechanical performance of carbon nanotubes is needed to explain the behavior of such structures. Here in this work, finite element method (FEM) is employed to numerically investigate the responses of defected carbon nanotubes to external loads. Single-walled carbon nanotubes (SWCNTs) with different structural configurations, i.e., zigzag, armchair, and chiral, with different types of vacancy defects are modeled and their effective mechanical properties are investigated. Finally, results are discussed and compared with those obtained for SWCNTs without defects.

1.
Treacy
M. M. J.
,
Ebbesen
T. W.
, and
Gibson
J. M.
,
1996
. “
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature
,
381
, pp.
678
680
.
2.
Ebbesen
T. W.
,
Lezec
H. J.
,
Hiura
H.
,
Bennett
J. W.
,
Ghaemi
H. F.
, and
Thio
T.
,
1996
. “
Electrical-conductivity of individual carbon nanotubes
,”
Nature
,
382
, pp.
54
56
.
3.
Ebbesen
T. W.
and
Ajayan
P. M.
,
1992
Large-Scale Synthesis of Carbon Nanotubes
,”
Nature
,
358
, pp.
220
222
.
4.
Baughman
H.
,
Zakhidov
A. A.
, and
de Heer
W. A.
,
2002
. “
Carbon Nanotubes-the Route Toward Applications
,”
Science
,
297
, pp.
787
792
.
5.
Ajayan
P. M.
,
Ebbesen
T. W.
,
Ichihashi
T.
,
Iijima
S.
,
Tanigaki
K.
, and
Hiura
H.
,
1993
Opening Carbon Nanotubes With Oxygen and Implications for Filling
,”
Nature
,
362
, pp.
522
525
.
6.
Cao
A.
,
Veedu
V. P.
,
Li
X.
,
Yao
Z.
,
Ghasemi-Nejhad
M. N.
, and
Ajayan
P. M.
,
2005
. “
Multifunctional Brushes Made from Carbon Nanotubes
,”
Nature Materials
,
4
, pp.
540
545
.
7.
Zhu
Z.
,
Finnerty
H., J.
,
Lu
G. Q.
,
Wilson
M. A.
, and
Yang
R. T.
,
2002
. “
Molecular Orbital Theory Calculations of the H2o-Carbon Reaction
,”
Energy & Fuels
,
16
, pp.
847
854
.
8.
Choi
H. J.
,
Ihm
J.
,
Louie
S. G.
, and
Cohen
M. L.
,
2000
. “
Defects, Quasibound States, and Quantum Conductance in Metallic Carbon Nanotubes
,”
Physical Review Letters
,
84
, pp.
2917
2920
.
9.
Mielke
S. L.
,
Troya
D.
,
Zhang
S.
,
Li
J. L.
,
Xiao
S.
,
Car
R.
,
Ruoff
R. S.
,
Schatz
G. C.
, and
Belytschko
T.
,
2004
. “
The Role of Vacancy Defects and Holes in the Fracture of Carbon Nanotubes
,”
Chemical Physics Letters
,
390
, pp.
413
420
.
10.
Ajayan
P. M.
,
Ravikumar
V.
, and
Charlier
J.-C.
,
1998
. “
Surface Reconstructions and Dimensional Changes in Single-Walled Carbon Nanotubes
,”
Physical Review Letters
,
81
, pp.
1437
1440
.
11.
Miyamoto
Y.
,
Berber
S.
,
Yoon
M.
,
Rubio
A.
, and
Tomanek
D.
,
2004
. “
Can Photo Excitations Heal Defects in Carbon Nanotubes?
,”
Chemical Physics Letters
,
392
, pp.
209
213
.
12.
Tran
N. E.
and
Lambrakos
S. G.
,
2005
. “
Purification and Defect Elimination of Single-Walled Carbon Nanotubes by the Thermal Reduction Technique
,”
Nanotechnology
,
16
, pp.
639
646
.
13.
Zhao
Q.
,
Nardelli
M. B.
, and
Bernhole
J.
,
2002
. “
Ultimate Strength of Carbon Nanotubes: A Theoretical Study
,”
Physical Review B
,
65
, pp.
144105
-
1
.
14.
Vitali
L.
,
Bughard
M.
,
Schneider
M.
,
Liu
A. L.
,
Wu
S. Y.
,
Jayanthi
C. S.
, and
Kern
K.
,
2004
. “
Phonon Spectromicroscopy of Carbon Nanostructures with Atomic Resolution
,”
Physical Review Letters
,
93
, pp.
136103
136103
.
15.
Fa
W.
,
Chen
J.
, and
Dong
J.
,
2004
. “
Effects of Topological Defects in the Semiconductor Carbon Nanotube Intramolecular Junctions
,”
The European Physical Journal B
,
37
, pp.
473
478
.
16.
Zhang
S.
,
Mielke
S. L.
,
Khare
R.
,
Troya
D.
,
Ruoff
R. S.
,
Schatz
G. C.
, and
Belytschko
T.
,
2005
. “
Mechanics of Defects in Carbon Nanotubes: Atomistic and Multiscale Simulations
,”
Physical Review B
,
71
, pp.
115403
-
1
.
17.
Krasheninnikov
A. V.
,
Nordlund
K.
,
Sirvio
M.
,
Salonen
E.
, and
Keinonen
J.
,
2001
. “
Formation of Ion-Irradiation-Induced Atomic-Scale Defects on Walls of Carbon Nanotubes
,”
Physical Review B
,
63
, pp.
245405
245405
.
18.
Krasheninnikov
A. V.
,
Nordlund
K.
, and
Keinonen
J.
,
2002
. “
Production of Defects in Supported Carbon Nanotube Under Ion-Irradiation
Physical Review B
,
65
, pp.
165423
165423
.
19.
Kalamkarov
A. L.
,
Veedu
V. P.
, and
Ghasemi Nejhad
M. N.
,
2005
. “
Mechanical Properties Modeling of Carbon Single-Walled Nanotubes: An Asymptotic Homogenization Method
,”
Journal of Computational and Theoretical Nanoscience
,
2
, pp.
124
131
.
20.
Ghasemi-Nejhad
M. N.
and
Askari
D.
,
2005
Mechanical Properties Modeling of Carbon Single-Walled Nanotubes: A Finite Element Method
,”
Journal of Computational and Theoretical Nanoscience
,
2
, pp.
298
318
.
21.
Veedu, V. P., Askari, D., and Ghasemi-Nejhad, M. N., 2006. “Chirality Dependence of Carbon Single-Walled Nanotube Material Properties: Axial Young’s Modulus,” Journal of Nanoscience and Nanotechnology, in press.
22.
Askari, D., Veedu, V. P., and Ghasemi-Nejhad, M. N., 2006. “Chirality Dependence of Carbon Single-Walled Nanotube Material Properties: Axial Coefficients of Thermal Expansion,” Journal of Nanoscience and Nanotechnology, in press.
23.
ANSYS User’s Manual. ANSYS Inc., 2006. Canonsburg, PA.
This content is only available via PDF.
You do not currently have access to this content.