In railroad vehicle dynamics, Euler angles are often used to describe the track geometry (track centerline and rail space curves). The tangent and curvature vectors as well as local geometric properties such as the curvature and torsion can be expressed in terms of Euler angles. Some of the local geometric properties and Euler angles can be related to measured parameters that are often used to define the track geometry. The Euler angles employed, however, define a coordinate system that may differ from the Frenet frame used in the classical differential geometry. The relationship between the track frame used in railroad vehicle dynamics and the Frenet frame used in the theory of curves is developed in this paper and used to shed light on some of the formulas and identities used in the geometric description in railroad vehicle dynamics. The conditions under which the two frames (track and Frenet) become equivalent are presented and used to obtain expressions for the curvature and torsion in terms of Euler angles and their derivatives with respect to the arc length.

1.
Berzeri, M., Sany, J.R., Shabana, A.A., 2000, “Curved Track Modeling Using the Absolute Nodal Coordinate Formulation”, Technical Report # MBS00-4-UIC, Department of Mechanical Engineering, University of Illinois at Chicago, Chicago.
2.
Pombo
J.
, and
Ambrosio
J.
,
2003
, “
General Spatial Curve Joint for Rail Guided Vehicles: Kinematics and Dynamics
”,
Multibody System Dynamics
, Vol.
9
(
3)
, pp.
237
264
.
3.
Rathod, C., and Shabana, A., 2006, “Geometry and Differentiability Requirements in Multibody Railroad vehicle Dynamic Formulations”, Nonlinear Dynamics, in press.
4.
Garg, V. K. and Dukkipati, R. V., 1988, Dynamics of Railway Vehicle Systems, Academic Press, New York.
5.
Kreyszig, E., 1991, Differential Geometry, Dover Publications.
6.
Shabana
A. A.
,
Tobaa
M.
,
Sugiyama
H.
and
Zaazaa
K.
,
2005
, “
On the Computer Formulations of the Wheel/Rail Contact
”,
Nonlinear Dynamics
, Vol.
40
, pp.
169
193
.
This content is only available via PDF.
You do not currently have access to this content.