Periodic binary elastic/acoustic composites can give rise to genuine band gaps in the band structure. The term genuine refers to the complete gaps, which persist independently of the polarization of the wave and of its direction of propagation. Within these complete gaps sound and vibrations are forbidden, the "acoustic crystals" stand still, and the total silence reigns. Thus a vibrator (or defect) introduced into a periodic elastic composite would be unable to generate sound or vibrations within the gap. The existence of complete gaps in the band structure is closely associated with the (classical) Anderson localization of sound and vibrations. The search for phononic band-gap materials is of comparable interest to the pursuit of photonic band-gap materials. Thus the phononic crystals are to acoustics as photonic crystals are to optics. In comparison to the photonic crystals, there are additional parameters (the mass densities and two velocities - longitudinal and transverse) involved in the phononic crystals, which make the physics richer and leaves us with more options in the quest of creating full stop bands in the system. As regards the applications, the phononic crystals are envisioned to find ways in the acoustic waveguides, improvements in designing the transducers, elastic/acoustic filters, noise control, ultrasonics, and medical imaging, to name a few. Since the interesting phenomena emerging from the phononic crystals are all consequences of the existence of the gap(s), a major part of the research efforts has focused on the search for phononic band-gap crystals. As such, we report and emphasize on the spectral gaps in the band structure for cleverly synthesized N-dimensional (N = 1, 2, 3) phononic crystals. PACS numbers:

1.
Yablonovitch
 
E.
,
1987
, “
Inhibited Spontaneous Emission in Solid State Physics and Electronics
”,
Phys. Rev. Lett.
,
58
(
20)
, pp.
2059
2062
.
2.
John
 
S.
,
1987
, “
Strong Localization of Photons in Certain Disordered Structures
”,
Phys. Rev. Lett.
,
58
(
23)
, pp.
2486
2869
.
1.
Anderson
 
P. W.
,
1958
, “
Absence of Diffusion in Certain Random Lattices
”,
Phys. Rev.
109
(
5)
, pp.
1492
1505
;
2.
Mott
 
N. F.
,
1967
, “
Electrons in Disordered Structures
”,
Adv. Phys.
,
16
(
1)
, pp.
49
144
.
1.
Dean
 
P.
,
Bacon
 
M. D.
,
1963
, “
The Nature of Vibrational Modes in Disordered Systems
”,
Proc. Phys. Soc. (London), A
81
, pp.
642
647
.
2.
Hodges
 
CH
,
1982
,
Confinement of Vibration by Structural Irregularity
,
J. Sound Vib.
,
82
(
3)
, pp.
411424
411424
.
3.
John
 
S.
,
Sompolinsky
 
H.
, and
Stephen
 
M. J.
,
1983
, “
Localization in a Disordered Elastic Medium Near Two Dimensions
”,
Phys. Rev. B
,
27
(
9)
, pp.
5592
5603
.
4.
John
 
S.
,
1984
, “
Electromagnetic Absorption in a Disordered Medium near a Photon Mobility Edge
”,
Phys. Rev. Lett.
,
63
(
22)
, pp.
2169
2172
. Authentic seeds of classical wave localization were disseminated in a well-plowed scientific background in this seminal paper.
5.
John
 
S.
,
1985
, “
Localization and Absorption of Waves in a Weakly Dissipative Disordered Medium
”,
Phys. Rev. B
,
31
(
1)
, pp.
304
309
.
6.
Wegner, F., 1982, “The Anderson Transition and the Nonlinear σ-Model”, in: Anderson Localization, Nagaoka, Y., and Fukuyama, H., eds., Springer, New York, Chap. 1, pp. 8–13.
1.
Kirkpatrick
 
T. R.
,
1985
, “
Localization of Acoustic Waves
”,
Phys. Rev. B
31
(
9)
, pp.
5746
5755
;
2.
Akkermans
 
E.
and
Maynard
 
R.
,
1985
, “
Weak Localization and Anharmonicity of Phonons
”,
Phys. Rev. B
,
32
(
12)
, pp.
7850
7862
.
1.
For an early extensive review of electronic, photonic, and phononic band-gap crystals, see
Kushwaha
 
M. S.
,
1996
, “
Classical Band Structure of Periodic Composites
”,
Int. J. Mod. Phys. B
,
10
(
9)
, pp.
977
1094
.
2.
Smith, W.A., Shaulov, A.A., and Auld, B.A., 1985, “Tailoring the Properties of Composite Piezoelectric Materials for Medical Ultrasonic Transducers”, Proc. 1985 IEEE Ultrason. Symp., pp. 642–647.
3.
Smith, W.A., 1986, “Composite Piezoelectric Materials for Medical Ultrasonic Imaging Transducers”, Proc. 1986 IEEE Symp. Appl. Ferroelec., pp. 249–256.
4.
Auld, B.A., 1987, “Three Dimensional Composites”, in: Ultrasonic Methods in Evaluation of Inhomogeneous materials, Alipi, A., and Mayor, W.G., eds., Nijhoff, Dordrecht, pp. 227–240.
5.
Smith
 
W. A.
, and
Shaulov
 
A. A.
,
1988
, “
Composite Piezoelectrics: Basic Research to a Practical Device
”,
Ferroelect.
,
87
, pp.
309
320
.
6.
Auld
 
B. A.
,
1989
, “
Waves and Vibrations in Periodic Piezoelectric Composite Materials
”,
Mater. Sci. Eng., A
122
, pp.
65
70
.
7.
Smith, W.A., 1989, “The Role of Piezocomposites in Ultrasonic Transducers”, Proc. 1989 IEEE Ultrason. Symp. pp. 755–766.
8.
Smith, W.A., 1990, “The Hydrophone Response of Piezoceramic-Rod/Piezopolymer-Matrix Composites”, Proc. 1990 IEEE Ultrason. Symp., pp. 757–761.
9.
Smith
 
W. A.
, and
Auld
 
B. A.
,
1991
, “
Modeling 1-3 Composite Piezoelectrics: Thickness-Mode Oscillations
”,
IEEE Trans. Ultrason., Ferroelectrics and Frequency Control.
,
38
(
1)
, pp.
40
47
.
10.
Smith
 
W. A.
,
1992
, “
New Opportunities in Ultrasonic Transducers From Innovations in Piezoelectric Materials
”,
Proc. 1992 SPIE Symp.
,
1733
, pp.
3
26
.
11.
Smith
 
W. A.
,
1993
, “
Modeling 1-3 Composite Piezoelectrics: Hydrostatic Response
”,
IEEE Trans. Ultrason. Ferroelectric and Frequency Control.
,
40
(
1)
, pp.
41
49
.
12.
Auld
 
B. A.
,
Beaupre
 
G. S.
, and
Herrmann
 
G.
,
1977
, “
Horizontal Shear Surface Waves on a Laminated Composite
”,
Electron. Lett.
,
13
(
18)
, pp.
525
527
.
13.
Camley
 
R. E.
,
Djafari-Rouhani
 
B.
,
Dobzynski
 
L
, and
Maradudin
 
A. A.
,
1983
, “
Transverse Elastic Waves in Periodically Layered Infinite and Semi-Infinite Media
”,
Phys. Rev. B
,
27
(
12)
,
7318
7329
.
14.
Nizzoli
 
F.
, and
Sandercock
 
J. R.
,
Horton
 
G. K.
, and
Maradudin
 
A. A.
,
1990
, “
Surface Brillouin Scattering From Phonons
”, in:
Dynamical Properties of Solids
, eds., North Holland, Amsterdam, Vol.
6
, pp.
281
335
.
15.
Ruffa
 
A. A.
,
1992
, “
Acoustic Wave Propagation Through Periodic Bubbly Liquids
”,
J. Acoust. Soc. Am.
,
91
(
1)
, pp.
1
11
.
16.
Dowling
 
J. P.
,
1993
, “
Sonic Band Structure in Fluids with Periodic Density Variations
”,
J. Acoust. Soc. Am.
,
91
(
5)
, pp.
2539
2543
.
17.
Esquivel-Sirvent
 
R.
and
Cocoletzi
 
G. H.
,
1994
, “
Band Structure for the Propagation of Elastic Waves in Superlattices
”,
J. Acoust. Soc. Am.
,
95
(
1)
, pp.
86
90
.
18.
Kushwaha
 
M. S.
,
Halevi
 
P.
,
Dobrzynski
 
L.
, and
Djafari-Rouhani
 
B.
,
1993
, “
Acoustic Band Structure of Periodic Composites
”,
Phys. Rev. Lett.
,
71
(
13)
, pp.
2022
2025
.
19.
Kushwaha
 
M. S.
,
Halevi
 
P.
,
Martinez
 
G.
,
Dobrzynski
 
L.
, and
Djafari-Rouhani
 
B.
,
1994
, “”,
Phys. Rev. B
,
49
(
4)
, pp.
2313
2322
. This paper reports a rigorous, general theory for n-component and n-dimensional periodic phononic systems.
20.
Kushwaha
 
M. S.
, and
Halevi
 
P.
,
1994
, “
Band-Gap Engineering in Periodic Elastic Composites
”,
Appl. Phys. Lett.
,
64
(
9)
, pp.
1085
1087
.
21.
Vasseur
 
J. O.
,
Djafari-Rouhani
 
B.
,
Dobrzynski
 
L.
,
Kushwaha
 
M. S.
, and
Halevi
 
P.
,
1994
, “
Complete Acoustic Band Gaps in Periodic Fibre Reinforced Composite Materials: The Carbon/Epoxy Composite and Some Metallic Systems
”,
J. Phys.: Condens. Matter
,
6
(), pp.
8759
8770
.
22.
Kushwaha
 
M. S.
,
Halevi
 
P.
,
Dobrzynski
 
L.
, and
Djafari-Rouhani
 
B.
,
1995
, “
Acoustic Band Structure of Periodic Elastic Composites: Kushwaha et al. Reply
”,
Phys. Rev. Lett.
,
75
(
19)
, pp.
3581
3582
.
23.
Kushwaha
 
M. S.
and
Halevi
 
P.
,
1996
, “
Giant Acoustic Stop Bands in Two-Dimensional Periodic Arrays of Liquid Cylinders
”,
Appl. Phys. Lett.
,
69
(
1)
, pp.
31
33
.
24.
Kushwaha
 
M. S.
and
Djafari-Rouhani
 
B.
,
1996
, “
Complete Acoustic Stop Bands for Cubic Arrays of Spherical Liquid Balloons
”,
J. Appl. Phys.
,
80
(
6)
, pp.
3191
3195
.
25.
Kushwaha
 
M. S.
and
Halevi
 
P.
,
1997
, “
Stop Bands for Cubic Arrays of Spherical Balloons
”,
J. Acoust. Soc. Am.
,
101
(
1)
, pp.
619
622
.
26.
Kushwaha
 
M. S.
,
1997
, “
Stop Bands for Periodic Metallic Rods: Sculptures that Can Filter the Noise
”,
Appl. Phys. Lett.
,
70
(
24)
, pp.
3218
3220
.
27.
Kushwaha
 
M. S.
and
Halevi
 
P.
,
1997
, “
Ultrawideband Filter for Noise Control
”,
Jpn. J. Appl. Phys.
,
36
(
8A)
, pp.
L1043–L1044
L1043–L1044
.
28.
Kushwaha
 
M. S.
, and
Djafari-Rouhani
 
B.
,
1998
, “
Sonic Stop Bands for Periodic Arrays of Metallic Rods: Honeycomb Structure
”,
J. Sound Vib.
,
218
(
4)
, pp.
697
709
.
29.
Kushwaha
 
M. S.
,
Djafari-Rouhani
 
B.
,
Dobrzynski
 
L.
, and
Vasseur
 
J. O.
,
1998
, “
Sonic Stop Bands for Cubic Arrays of Rigid Inclusions in Air
”,
Euro. Phys. J., B
3
(
2)
, pp.
155
161
.
30.
Kushwaha
 
M. S.
,
Akjouj
 
A.
,
Djafari-Rouhani
 
B.
,
Dobrzynski
 
L.
, and
Vasseur
 
J. O.
,
1998
, “
Acoustic Spectral Gaps and Discrete Transmission in Slender Tubes
”,
Solid State Commun.
,
106
(
10)
, pp.
659
663
.
31.
Kushwaha
 
M. S.
and
Djafari-Rouhani
 
B.
,
1998
, “
Giant Sonic Stop Bands in Two-Dimensional System of Fluids
”,
J. Appl. Phys.
,
84
(
9)
, pp.
4677
4683
.
32.
Kushwaha
 
M. S.
,
Djafari-Rouhani
 
B.
, and
Dobrzynski
 
L.
,
1998
, “
Sound Isolation From Cubic Arrays of Air Bubbles in Water
”,
Phys. Lett. A
,
248
(
2–4)
, pp.
252
256
.
33.
Kushwaha
 
M. S.
,
1999
, “
Band Gap Engineering in Phononic Crystals
”,
Rec. Res. Dev. Appl. Phys.
, Pt.
2
, pp.
743
855
. This article reviews the early progress on the phononic band-gap crystals.
34.
Sigalas
 
M. M.
, and
Economou
 
E. N.
,
1993
, “
Band Structure of Elastic Waves in Two-Dimensional Systems
”,
Solid. State Commun.
,
86
(
3)
, pp.
141
143
.
35.
Economou
 
E. N.
, and
Sigalas
 
M. M.
,
1993
, “
Classical Wave Propagation in Periodic Structures: Cermet Versus Network Topology
”,
Phys. Rev. B
,
48
(
18)
, pp.
13434
13438
.
36.
Sigalas
 
M. M.
and
Economou
 
E. N.
,
1994
, “
Elastic Waves in Plates With Periodically Placed Inclusions
”,
J. Appl. Phys.
,
75
(
6)
, pp.
2845
2850
.
37.
Economou
 
E. N.
and
Sigalas
 
M. M.
,
1994
, “
Stop Bands for Elastic Waves in Periodic Composite Materials
”,
J. Acoust. Soc. Am.
,
95
(
4)
, pp.
1734
1740
.
38.
Sigalas
 
M. M.
,
Economou
 
E. N.
, and
Kafesaki
 
M.
,
1994
, “
Spectral Gaps for Electromagnetic and Scalar Waves: Possible Explanation for Certain Differences
”,
Phys. Rev. B
,
50
(
5)
, pp.
3393
3396
.
39.
Sigalas
 
M. M.
, and
Economou
 
E. N.
,
1995
, “
Elastic Wave Band Gaps in 3D Periodic Polymer Matrix Composites
”,
Solid State Commun.
,
96
(
5)
, pp.
285
289
.
40.
Sigalas
 
M. M.
, and
Economou
 
E. N.
,
1996
, “
Attenuation of Multiple-Scattered Sound
”,
Europhys. Lett.
,
36
(
4)
, pp.
241
246
.
41.
Sigalas
 
M. M.
,
1997
, “
Elastic Wave Band Gaps and Defect States in Two-Dimensional Composites
”,
J. Acoust. Soc. Am.
,
101
(
3)
, pp.
1256
1261
.
42.
Klironomos
 
A. D.
, and
Economou
 
E. N.
,
1998
, “
Elastic Wave Band Gaps and Single Scattering
”,
Solid State Commun.
,
105
(
5)
, pp.
327
332
.
43.
Sigalas
 
M. M.
,
1998
, “
Defect States of Acoustic Waves in a Two-Dimensional Lattice of Solid Cylinders
”,
J. Appl. Phys.
,
84
(
6)
, pp.
3026
3030
.
44.
Kafesaki
 
M.
and
Economou
 
E. N.
,
1999
, “
Multiple Scattering Theory for Three-Dimensional Periodic Acoustic Composites
”,
Phys. Rev. B
,
60
(
17)
, pp.
11993
12001
.
45.
Mon
 
K. K.
,
1995
, “
Spectral Gaps for Elastic Waves in Continuous Periodic Composites
”,
J. Appl. Phys.
,
78
(
10)
, pp.
5981
5983
.
46.
Hernandez-Cocoletzi
 
H.
,
Krokhin
 
A.
, and
Halevi
 
P.
,
1995
, “
Reality of Eigenfrequencies of Periodic Elastic Composites
”,
Phys. Rev. B
,
51
(
23)
, pp.
17181
17184
.
47.
Vasseur
 
J. O.
,
Djafari-Rouhani
 
B.
,
Dobrzynski
 
L.
, and
Deymier
 
P. A.
,
1997
, “
Acoustic Band Gaps in Fibre Composite Materials of Boron Nitride Structure
”,
J. Phys.: Condens. Matter
,
9
(), pp.
7327
7341
.
48.
Hoskinson
 
E.
, and
Ye
 
Z.
,
1999
, “
Phase Transition in Acoustic Propagation in 2D Random Liquid Media
”,
Phys. Rev. Lett.
,
83
(
14)
, pp.
2734
2737
.
49.
Vines
 
R. E.
,
Wolfe
 
J. P.
, and
Every
 
A. V.
,
1999
, “
Scanning Phononic Lattices with Ultrasound
”,
Phys. Rev. B
,
60
(
17)
, pp.
11871
11874
.
50.
Caballero
 
D.
,
Sanchez-Dehesa
 
J.
,
Rubio
 
C.
,
Martinez-Sala
 
R.
,
Sanchez-Perez
 
J. V.
,
Meseguer
 
F.
,
Llinares
 
J.
, and
Galvez
 
F.
,
1999
, “
Large Two-Dimensional Sonic Band Gaps
”,
Phys. Rev. E
,
60
(
6)
, pp.
R6316–R6319
R6316–R6319
.
51.
Sigalas
 
M. M.
, and
Garcia
 
N.
,
2000
, “
Importance of Coupling Between Longitudinal and Transverse Components for the Creation of Acoustic Band Gaps: The Aluminum in Mercury Case
”,
Appl. Phys. Lett.
,
76
, pp.
2307
2309
.
52.
Kafesaki
 
M.
,
Penciu
 
R. S.
, and
Economou
 
E. N.
,
2000
, “
Air Bubbles in Water: A Strongly Multiple Scattering Medium for Acoustic Waves
”,
Phys. Rev. Lett.
,
84
(
26)
, pp.
6050
6053
.
53.
Kafesaki
 
M.
,
Sigalas
 
M. M.
, and
Garcia
 
N.
,
2000
, “
Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials
”,
Phys. Rev. Lett.
,
85
(
19)
, pp.
4044
4047
.
54.
Wang
 
X. F.
,
Kushwaha
 
M. S.
, and
Vasilopoulos
 
P.
,
2001
, “
Tunability of Acoustical Spectral Gaps and Transmission in Periodically Stubbed Waveguides
”,
Phys. Rev. B
,
65
(
3)
, pp.
035107
035107
.
55.
Sainidou
 
R.
,
Stefanou
 
N.
, and
Modinos
 
A.
,
2002
, “
Formation of Absolute Frequency Band Gaps in Three-Dimensional Solid Phononic Crystals
”,
Phys. Rev. B
,
66
(
21)
, pp.
212301
212301
.
56.
Gupta
 
B. C.
, and
Ye
 
Z.
,
2003
, “
Theoretical Analysis of the Focusing of Acoustic Waves by Two-Dimensional Sonic Crystals
”,
Phys. Rev. E
,
67
(
3)
, pp.
036603
036603
.
57.
Garcia
 
N.
,
Nieto-Vesperinas
 
M.
,
Ponizovskaya
 
E. V.
, and
Torres
 
M.
,
2003
, “
Theory for Tailoring Sonic Devices: Diffraction Dominates Over Refraction
”,
Phys. Rev. E
,
67
(
4)
, pp.
046606
046606
.
58.
Lai
 
Y.
and
Zhang
 
Z. Q.
,
2003
, “
Large Band Gaps in Elastic Phononic Crystals with Air Inclusions
”,
Appl. Phys. Lett.
,
83
(
19)
, pp.
3900
3902
.
59.
Sainidou
 
R.
,
Stefanou
 
N.
, and
Modinos
 
A.
,
2004
, “
Green’s Function Formalism for Phononic Crystals
”,
Phys. Rev. B
,
69
(
6)
, pp.
064301
064301
.
60.
Zhang
 
X.
, and
Liu
 
Z.
,
2004
, “
Negative Refraction of Acoustic Waves in Two-Dimensional Phononic Crystals
”,
Appl. Phys. Lett.
,
85
(
2)
, pp.
341
343
.
61.
Wang
 
G.
,
Wen
 
X.
,
Wen
 
J.
,
Shao
 
L.
, and
Liu
 
Y.
,
2004
, “
Two-Dimensional Locally Resonant Phononic Crystals with Binary Composites
”,
Phys. Rev. Lett.
,
93
(
15)
, pp.
154302
154302
.
62.
Martinez-Sala
 
R.
,
Sancho
 
J.
,
Sanchez
 
J. V.
,
Gomez
 
V.
,
Llinares
 
J.
, and
Meseguer
 
F.
,
1995
, “
Sound Attenuation by Sculpture
”,
Nature
,
378
(
16
Nov), pp.
241
241
.
63.
Parmley
 
S.
,
Zobrist
 
T.
,
Clough
 
T.
,
Perez-Miller
 
A.
,
Makela
 
M.
, and
Yu
 
R.
,
1995
, “
Phononic Band Structure in a Mass Chain
”,
Appl. Phys. Lett.
,
67
(
6)
, pp.
777
779
.
64.
Vasseur
 
J. O.
, and
Deymier
 
P. A.
,
1997
, “
Propagation of Acoustic Waves in Periodic and Random Two-Dimensional Composite Media
”,
J. Mater. Res.
,
12
(
8)
, pp.
2207
2212
.
65.
Vasseur
 
J. O.
,
Deymier
 
P. A.
,
Frantziskonis
 
G.
,
Hong
 
G.
,
Djafari-Rouhani
 
B.
, and
Dobrzynski
 
L.
,
1998
,
J. Phys.: Condens. Matter
,
10
(), pp.
6051
6064
.
66.
Robertson
 
W. M.
, and
Rudy
 
J. F.
,
1998
, “
Measurement of Acoustic Stop Bands in Two-Dimensional Periodic Scattering Arrays
”,
J. Acoust. Soc. Am.
,
104
(
2)
, pp.
694
699
.
67.
Sanchez-Perez
 
J. V.
,
Caballero
 
D.
,
Martinez-Sala
 
R.
,
Rubio
 
C.
,
Sanchez-Dehesa
 
J.
,
Meseguer
 
F.
,
Llinares
 
J.
, and
Galvez
 
F.
,
1998
, “
Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders
”,
Phys. Rev. Lett.
,
80
(
24)
, pp.
5325
5328
.
68.
Montero de Espinoza
 
F. R.
,
Jimenez
 
E.
, and
Torres
 
M.
,
1998
, “
Ultrasonic Band Gap in a Periodic Two-Dimensional Composite
”,
Phys. Rev. Lett.
,
80
(
6)
, pp.
1208
1211
.
69.
Torres
 
M.
,
Montero de Espinoza
 
F. R.
,
Garcia-Pablo
 
D.
, and
Garcia
 
N.
,
1999
,
Phys. Rev. Lett.
,
82
(
15)
, pp.
3054
3057
.
70.
Meseguer
 
F.
,
Holgado
 
M.
,
Caballero
 
D.
,
Benaches
 
N.
,
Sanchez-Dehesa
 
J.
,
Lopez
 
C.
, and
Llinares
 
J.
,
1999
, “
Rayleigh-Wave Attenuation by a Semi-Infinite Two-Dimensional Elastic-Band-Gap Crystal
”,
Phys. Rev. B
,
59
(
19)
, pp.
12169
12172
.
71.
Garcia-Pablo
 
D.
,
Sigalas
 
M.
,
Montero de Espinoza
 
F. R.
,
Torres
 
M.
,
Kafesaki
 
M.
, and
Garcia
 
N.
,
2000
, “
Theory and Experiments on Elastic Band Gaps
”,
Phys. Rev. Lett.
,
84
(
19)
, pp.
4349
4352
.
72.
Vasseur
 
J. O.
,
Deymier
 
P. A.
,
Chenni
 
B.
,
Djafari-Rouhani
 
B.
,
Dobrzynski
 
L.
, and
Prevost
 
D.
,
2001
, “
Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals
”,
Phys. Rev. Lett.
,
86
(
14)
, pp.
3012
3015
.
73.
Torres
 
M.
,
Montero de Espinoza
 
F. R.
, and
Aragon
 
J. L.
,
2001
, “
Ultrasonic Wedges for Elastic Wave Bending and Splitting Without Requiring a Full Band Gap
”,
Phys. Rev. Lett.
,
86
(
19)
, pp.
4282
4285
.
74.
Cervera
 
F.
,
Sanchis
 
L.
,
Sanchez-Perez
 
J. V.
,
Martinez-Sala
 
R.
,
Rubio
 
C.
,
Meseguer
 
F.
,
Lopez
 
C.
,
Caballero
 
D.
, and
Sanchez-Dehesa
 
J.
,
2002
, “
Refractive Acoustic Devices for Airborne Sound
”,
Phys. rev. Lett.
,
88
(
2)
, pp.
023902
023902
.
75.
Yang
 
S.
,
Page
 
J. H.
,
Liu
 
Z.
,
Cowan
 
M. L.
,
Chan
 
C. T.
, and
Sheng
 
P.
,
2002
, “
Ultrasound Tunneling Through 3D Phononic Crystals
”,
Phys. Rev. Lett.
,
88
(
10)
, pp.
104301
104301
.
76.
Yang
 
S.
,
Page
 
J. H.
,
Liu
 
Z.
,
Cowan
 
M. L.
,
Chan
 
C. T.
, and
Sheng
 
P.
,
2004
, “
Focusing of Sound in 3D Phononic Crystals
”,
Phys. Rev. Lett.
,
93
(
2)
, pp.
024301
024301
.
77.
Sigalas
 
M.
,
Kushwaha
 
M. S.
,
Economou
 
E. N.
, and
Steurer
 
W.
,
2005
, “
Classical Vibrational Modes in Phononic Lattices: Theory and Experiment
”,
Zeitschrift. Fu¨r Kristallographie.
,
220
, pp.
765
809
. This article reviews the latest development in the field of phononic crystals.
This content is only available via PDF.
You do not currently have access to this content.