The wettability of silicon surface hydrophobized using silanization reagents was studied. The advancing and receding contact angles were measured with the captive needle approach. In this approach, a drop under study was held on the hydrophobized surface with a fine needle immersed in it. The asymptotic advancing and receding angles were obtained by incrementally increasing the volume added and removed, respectively, until no change in angles was observed. The values were compared with the previously published results. Further, the wetting behavior of water droplets on periodically structured hydrophobic surfaces was investigated. The surfaces were prepared with the wet etching process and contain posts and holes of different sizes and void fractions. The surface geometry brought up a scope to study the Wenzel (filling of surface grooves) and Cassie (non filling of the surface grooves) theories and effects of surface geometry and roughness on the contact angle. Experimental data point to an anomalous behavior where the data does not obey either Wenzel or Cassie type phenomenology. This behavior is explained by an understanding of the contact line topography. The effect of contact line topography on the contact angle was thus parametrically studied. It was also inferred that, the contact angle increased with the increase in void fraction. The observations may serve as guidelines in designing surfaces with the desired wetting behavior.

1.
Gao
L.
,
McCarthy
T. J.
,
The “Lotus effect” Explained: Two reasons why two length scales of topography are important
.
Langmuir
,
2006
.
22
: p.
2966
2967
.
2.
Cheng
Y.-T.
,
Rodak
D. E.
,
Wong
C. A.
and
Hayden
C. A.
,
Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves
.
Nanotechnology
,
2006
.
17
: p.
1359
1362
.
3.
Bico
J.
, et al.,
Wetting of textured surfaces
.
Colloid and Surfaces A
,
2002
.
206
: p.
41
46
.
4.
Shibuichi
S.
, et al.,
Super water-repellent surfaces resulting from fractal structure
.
J. Phys. Chem.
,
1996
.
100
: p.
19512
19517
.
5.
Quere
D.
,
Non-sticking drops
.
Reports on Progress in Physics
,
2005
.
68
(
11)
: p.
2495
2532
.
6.
Marmur
A.
,
Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?
Langmuir
,
2003
.
19
: p.
8343
8348
.
7.
He
B.
,
Lee
J.
and
Patankar
N. A.
,
Contact angle hysteresis on rough hydrophobic surfaces
.
Colloid and Surfaces A
,
2004
.
248
: p.
101
104
.
8.
Good
R. J.
,
Contact angle, wetting and adhesion: a critical review
.
J. Adhesion Sci. Tech.
,
1992
.
6
(
12)
: p.
1269
1302
.
9.
Patankar
N. A.
,
On the modeling of hydrophobic contact angles on rough surfaces
.
Langmuir
,
2003
.
19
: p.
1249
1253
.
10.
He
B.
, et al.,
Multiple equilibrium droplet shapes and design criteria for rough hydrophobic surfaces
.
Langmuir
,
2003
.
19
: p.
4999
5003
.
11.
Nakajima
A.
,
Design of a transparent hydrophobic coating
.
J. Ceramic Soc. Japan
,
2004
.
112
(
10)
: p.
533
540
.
12.
Extrand
C. W.
,
Criteria for ultrahydrophobic surfaces
.
Langmuir
,
2004
.
20
: p.
5013
5018
.
13.
Callies
M.
, and
Quere
D.
,
On water repellency
.
Soft matter
,
2005
.
1
: p.
55
61
.
14.
Takeshita
N.
, et al.,
Simultaneous tailoring of surface topography and chemical structure for controlled wettability
.
Langmuir
,
2004
.
20
: p.
8131
8136
.
15.
Wenzel
R. N.
,
Resistance of solid surfaces to wetting by water
.
Industrial & Engineering Chemistry
,
1936
.
28
(
8)
: p.
988
994
.
16.
Cassie
A. B. D.
,
Contact angles
.
Discussions of the Faraday Society
,
1948
.
3
: p.
11
11
.
17.
Zhai
L.
, et al.,
Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib Desert beetle
.
Nano Letters
,
2006
.
6
(
6)
: p.
1213
1217
.
18.
Bartolo
D.
, et al.,
Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces
.
Europhysics Letters
,
2006
.
74
(
2)
: p.
299
305
.
19.
Baldacchini
T.
, et al.,
Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser
.
Langmuir
,
2006
.
22
(
11)
: p.
4917
4919
.
20.
Chen
Y.
,
He
B.
,
Lee
J.
, and
Patankar
N. A.
,
Anisotropy in the wetting of rough surfaces
.
Journal of Colloid and Interface Science
,
2005
.
281
: p.
458
464
.
21.
Iwamatsu
M.
,
Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces
.
Journal of Colloid and Interface Science
,
2006
.
297
(
2)
: p.
772
777
.
22.
McHale
G.
, et al.,
Analysis of droplet evaporation on a superhydrophobic surface
.
Langmuir
,
2005
.
21
(
24)
: p.
11053
11060
.
23.
Oner
D.
, and
McCarthy
T. J.
,
Ultrahydrophobic surfaces, effects of topography length scales on wettability
.
Langmuir
,
2000
.
16
: p.
7777
7782
.
24.
Hsieh
C.-T.
, et al.,
Influence of surface roughness on water- and oil-repellant surfaces coated with nanoparticles
.
Applied Surface Science
,
2005
.
240
: p.
318
326
.
25.
Onda
T.
, et al.,
Super-water-repellant fractal surfaces
.
Langmuir
,
1996
.
12
(
9)
: p.
2125
2127
.
26.
Lacroix
L. M.
, et al.,
Tuneable rough surfaces: A new approach for elaboration of superhydrophobic films
.
Surface Science
,
2005
.
592
(
1–3)
: p.
182
188
.
27.
Abdelsalam
M. E.
, et al.,
Wetting of regularly structured gold surfaces
.
Langmuir
,
2005
.
21
: p.
1753
1757
.
28.
Bhushan
B.
and
Jung
Y. C.
,
Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces
.
Nanotechnology
,
2006
.
17
(
11)
: p.
2758
2772
.
29.
Feng
L.
,
Li
S.
,
Li
Y.
,
Li
H.
,
Zhang
L.
,
Zhai
J.
,
Song
Y.
,
Liu
B.
,
Jiang
L.
,
Zhu
D.
,
Super-Hydrophobic Surfaces: From Natural to Artificial
.
Advanced Materials
,
2002
.
14
(
24)
: p.
1857
1860
.
30.
Hikita
M.
, et al.,
Super-liquid-repellant surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups
.
Langmuir
,
2005
.
21
: p.
7299
7302
.
31.
Jia
X.
, and
McCarthy
T. J.
,
Controlled Growth of Silicon Dioxide from nanoholes in silicon-supported tris-(trimethoxysiloxyl)silyl monolayers: rational control of surface roughness at the nanometer length scale
.
Langmuir
,
2003
.
19
: p.
2449
2457
.
32.
Liu
H.
, et al.,
Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity
.
Langmuir
,
2004
.
20
: p.
5659
5661
.
33.
Qian
B.
, and
Shen
Z.
,
Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper and Zinc substrates
.
Langmuir
,
2005
.
21
: p.
9007
9009
.
34.
Zhao
N.
, et al.,
Fabrication of biomimetic superhydrophobic coating with a micro-nano binary structure
.
Macromolecular rapid communications
,
2005
.
26
: p.
1075
1080
.
35.
Shang
H. M.
, et al.,
Optically transparent superhydrophobic silica-based films
.
Thin Solid Films
,
2005
.
472
: p.
37
43
.
36.
Hsieh, C.T. and W.S. Fan, Superhydrophobic behavior of fluorinated carbon nanofiber arrays. Applied Physics Letters, 2006. 88 (24).
37.
Zorba
V.
, et al.,
Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation
.
Nanotechnology
,
2006
.
17
(
13)
: p.
3234
3238
.
38.
Krupenkin
T. N.
, et al.,
From rolling ball to complete wetting: the dynamic tuning of liquids on nanstructured surfaces
.
Langmuir
,
2004
.
20
: p.
3824
3827
.
39.
Lau
K. K. S.
, et al.,
Superhydrophobic carbon nanotube forests
.
Nano Letters
,
2003
.
3
(
12)
: p.
1701
1705
.
40.
Flemming
M.
and
Duparre
A.
,
Design and characterization of nanostructured ultrahydrophobic coatings
.
Applied Optics
,
2006
.
45
(
7)
: p.
1397
1401
.
41.
Guo
Z. G.
,
Zhou
F.
, and
Liu
W. M.
,
Preparation of biomimetic superhydrophobic silica film by sol-gel technique
.
Acta Chimica Sinica
,
2006
.
64
(
8)
: p.
761
766
.
42.
Jeong
H. E.
, et al.,
Nanoengineered multiscale hierarchical structures with tailored wetting properties
.
Langmuir
,
2006
.
22
(
4)
: p.
1640
1645
.
43.
Chatain
D.
, et al.,
Numerical analysis of the shapes and energies of droplets on micropatterned substrates
.
Langmuir
,
2006
.
22
(
9)
: p.
4237
4243
.
44.
Chaudhury
M. K.
, and
Whitesides
G. M.
,
Correlation between surface energy and surface constitution
.
Science
,
1992
.
255
: p.
1230
1232
.
45.
Porcheron
F.
and
Monson
P. A.
,
Mean-field theory of liquid droplets on roughened solid surfaces: Application to superhydrophobicity
.
Langmuir
,
2006
.
22
(
4)
: p.
1595
1601
.
46.
Nosonovsky
M.
and
Bhushan
B.
,
Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces
.
Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems
,
2006
.
12
(
3)
: p.
231
237
.
47.
Nosonovsky
M.
and
Bhushan
B.
,
Wetting of rough three-dimensional superhydrophobic surfaces
.
Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems
,
2006
.
12
(
3)
: p.
273
281
.
48.
Patankar
N. A.
,
Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars
.
Langmuir
,
2004
.
20
: p.
8209
8213
.
49.
Dupuis
A.
, and
Yeomans
J. M.
,
Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions
.
Langmuir
,
2005
.
21
: p.
2624
2629
.
50.
Alberti
G.
, and
DeSimone
A.
,
Wetting of rough surfaces: a homogenization approach
.
Proc. of Roy. Soc. A
,
2005
.
461
: p.
79
97
.
51.
Carbone
G.
, and
Mangialardi
L.
,
Hydrophobic properties of a wavy rough surface
.
Eur. Physical Journal E
,
2005
.
16
: p.
67
76
.
52.
Ishino
C.
,
Okumura
K.
, and
Quere
D.
,
Wetting transitions on rough surfaces
.
Eur. Physical Journal E
,
2004
.
68
(
3)
: p.
419
425
.
53.
Yang
J. T.
, et al.,
Droplet manipulation on a hydrophobic textured surface with roughened patterns
.
Journal of Microelectromechanical Systems
,
2006
.
15
(
3)
: p.
697
707
.
54.
Cheng
Y.-T.
, and
Rodak
D. E.
,
Is the lotus leaf superhydrophobic?
Applied Physics Letters
,
2005
.
86
: p.
144101
144101
.
55.
Patankar
N. A.
,
Transition between superhydrophobic states on rough surfaces
.
Langmuir
,
2004
.
20
: p.
7097
7102
.
56.
Extrand
C. W.
,
Model for contact angles and hysteresis on rough and ultraphobic surfaces
.
Langmuir
,
2002
.
18
(
21)
: p.
7991
7999
.
57.
Extrand
C. W.
,
Contact angles and hysteresis on surfaces with chemically heterogeneous islands
.
Langmuir
,
2003
.
19
(
9)
: p.
3793
3796
.
58.
Extrand
C. W.
,
Designing for optimum liquid repellency
.
Langmuir
,
2006
.
22
(
4)
: p.
1711
1714
.
59.
Gao
L. a. M.
,
McCarthy
T. J.
,
Contact angle hysteresis explained
.
Langmuir
,
2006
.
22
: p.
6234
6237
.
60.
Gao
L. C.
and
McCarthy
T. J.
,
Contact angle hysteresis explained
.
Langmuir
,
2006
.
22
(
14)
: p.
6234
6237
.
This content is only available via PDF.
You do not currently have access to this content.