This paper presents a simulation model for a silicon micromachined Knudsen pump that combines analytical and numerical methods. It involves numerical modeling of the thermal response, followed by an analytical estimate of the pumping using Kennard's model. The loss of performance resulting from gas diffusion though walls of the pump is specifically addressed. The results are subsequently validated against the previously reported experimental measurements of a single-stage Knudsen pump. This device, which has a total footprint of less than 1500 × 2000 μm2, has multiple narrow channels connecting two cavities, one of which is heated. This cavity is further connected through a wide channel to a third cavity, which remains at ambient. The simulation model for this device predicts a vacuum pressure of 0.47 atm. at an input power of 97.6 mW, which deviates less than 20% from the experimentally observed data. Finally, the paper extends the concept of single stage pumping to a multi-stage pump. While Kennard's model is used for modeling the first stage, the simulation for subsequent stages, which are characterized by a relatively high Knudsen number, uses an empirically corrected

1.
Reynolds
O.
,
1878
, “
On Certain Dimensional Properties of Matter in the Gaseous State
,”
Philos. Tran. Royal Society London
,
170
, pp.
727
845
.
2.
Maxwell
J. C.
,
1879
, “
On Stresses in Rarefied Gases Arising from Inequalities of Temperature
,”
Philos. Tran. Royal Society London
,
170
, pp.
231
256
.
3.
Karniadakis, G. E., Beskok, A., and Aluru, N., 2005, Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York, Chap. 1.
4.
Knudsen
M.
,
1910
, “
Eine Revision der Gleichgewichtsbedingung der Gase. Thermische Molecularstr’omung
,”
Ann. Phys.
, Leipzig,
31
, pp.
205
229
.
5.
Kolesar
E. S.
,
Spangler
G. E.
,
1998
, “
Review and Summary of a Silicon Micromachined Gas Chromatography System
,”
IEEE Transactions on Components Packaging and Manufacturing Technology, Part B: Advanced Packaging
,
21
(
4)
, pp.
324
328
.
6.
Lu, C. J., Tian, W. C., Steinecker, W. H., Guyon, A., Agah, M., Oborny, M. C., Wise, K. D., Pang, S. W., and Zellers, E. T., 2003, “Functionally Integrated MEMS Micro Gas Chromatograph Subsystem,” 7th Intl. Conference of Miniaturized Chemical and Biochemical Analysis Systems, pp. 411–415.
7.
Agah
M.
,
Potkay
J. A.
,
Lambertus
G.
,
Sacks
R.
, and
Wise
K. D.
,
2005
, “
High-Performance Temperature Programmed Microfabricated Gas Chromatography Columns
,”
Journal of Microelectromechanical Systems
,
14
(
5)
, pp.
1039
1050
.
8.
Kolesar, E. S., Jr., and Spangler, G. E., 2001, “Advances in Fabricating Silicon Micromachined Gas Chromatographic Columns,” Twenty-Fourth International Symposium of the American Chemical Society (ACS) on Capillary Chromatography and Electrophoresis, Las Vegas, NV.
9.
Tian
W. C.
,
Pang
S. W.
,
Lu
C.-J.
, and
Zellers
E. T.
,
2003
, “
Microfabricated Preconcentrator-Focuser for a Microscale Gas Chromatograph
,”
Journal of Microelectromechanical Systems
,
12
(
3)
, pp.
264
272
.
10.
Nguyen
N. T.
,
Huang
X.
,
Chuan
T. K.
,
2002
, “
MEMS-Micropumps: A Review
,”
ASME J. Fluid Eng.
124
(
22)
, pp.
384
392
.
11.
Vargo
S. E.
,
Muntz
E. P.
,
Shifflett
G. R.
,
1999
, “
Knudsen Compressor as a micro- and macroscale vacuum pump without moving parts or fluids
,”
J. Vac. Sci. Technol.
,
A17
(
4)
, pp.
2308
2313
.
12.
Vargo
S. E.
,
Muntz
E. P.
,
2001
, “
Initial results from the first MEMS fabricated thermal transpiration-driven vacuum pump
,”
Rarefied Gas Dynamics, AIP Conference Proceedings
,
585
, pp.
502
509
.
13.
McNamara
S.
, and
Gianchandani
Y. B.
,
2005
, “
On-Chip Vacuum Generated by a Micromachined Knudsen Pump
,”
J. Microelectromechanical Systems
,
14
(
4)
, pp.
741
746
.
14.
Kennard, E. H., 1938, Kinetic Theory of Gases, McGraw Hill, pp. 327–332.
15.
Loeb, L. B., 1934, The Kinetic Theory of Gases, McGraw Hill, pp. 355–359.
16.
Hwang, S.-T., Kammermeyer, K., 1974, “Membranes in Separation,” Techniques of Chemistry, Vol. VII, John Wiley Sons, Chap. VI.
17.
Williams
J. C.
,
1970
, “
Thermal Transpiration — A Continuum Gasdynamics View
,”
J. Vac. Sci. Technol.
,
8
, pp.
446
450
.
18.
Ebert
W. A.
, and
Sparrow
E. M.
,
1965
, “
Slip flow in rectangular and annular ducts
,”
J. Basic Eng
,
87
, p.
1018
1024
.
19.
Morini
G. L.
, and
Spiga
M.
,
1998
, “
Slip flow in rectangular microtubes
,”
Microscale Therm. Eng.
,
2
(
4)
, pp.
273
282
.
20.
Aubert
C.
, and
Colin
S.
,
2001
, “
Higher order boundary conditions for gaseous flows in rectangular microchannels
,”
Microscale Therm. Eng.
,
5
(
1)
, pp.
41
54
.
21.
Colin
S.
,
Lalonde
P.
, and
Caen
R.
,
2004
, “
Validation of a second order slip flow model in rectangular microchannels
,”
Heat Transfer Eng.
25
(
3)
, pp.
23
30
.
22.
Maurer
J.
,
Tabling
P.
,
Joseph
P.
, and
Willaime
H.
,
2003
, “
Second order slip laws in microchannels for helium and nitrogen
,”
Phys. Fluids
,
15
(
9)
, pp.
2613
2621
.
23.
Arkilic
E. B.
,
Breuer
K. S.
, and
Schmidt
M. A.
,
2001
, “
Mass flow and tangential momentum accommodation in silicon micromachined channels
,”
J. Fluid Mech.
,
437
, pp.
29
43
.
24.
Bhatnagar
P.
,
Gross
E.
, and
Krook
K.
,
1954
, “
A model for collision processes in gases
,”
Phys. Review
,
94
, pp.
511
524
.
25.
Sharipov
F.
,
1999
, “
Non-isothermal gas flow through rectangular microchannels
,”
J. Micromechanics and Microengineering
,
9
, pp
394
401
.
26.
Bird, G. A., 1994, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford, UK.
27.
Oran
E. S.
,
Oh
C. K.
,
Cybyk
B. Z.
,
1998
, “
Direct Simulation Monte Carlo: Recent Advances and Applications
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
403
441
This content is only available via PDF.
You do not currently have access to this content.